\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

ai tra loi nhanh nhat mk tk cho, minh la chi cua cao tran phuong linh

9 tháng 6 2019

1)

a/ \(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\frac{\sqrt{3\cdot2}+\sqrt{2\cdot7}}{2\sqrt{3}+2\sqrt{7}}\)

                                  \(=\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\frac{\sqrt{2}}{2}\)

b/ \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\text{​​}\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{6}+\sqrt{8}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\text{​​}\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{3\cdot2}+\sqrt{4\cdot2}+\sqrt{2\cdot2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\text{​​}\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{2}\cdot\sqrt{3}+\sqrt{4}\cdot\sqrt{2}+\sqrt{2}\cdot\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\text{​​}\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\text{​​}\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\text{​​}\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)

9 tháng 6 2019

2)

+ Ta Có :

\(\sqrt{a+b}\Rightarrow\left(\sqrt{a+b}\right)^2=a+b.\)

\(\sqrt{a}+\sqrt{b}\Rightarrow\left(\sqrt{a}+\sqrt{b}\right)^2=\left(\sqrt{a}\right)^2+2\sqrt{a}\cdot\sqrt{b}+\left(\sqrt{b}\right)^2\)

                                                                  \(=a+2\sqrt{a}\cdot\sqrt{b}+b\)

+ Ta Lại có \(2\sqrt{a}\cdot\sqrt{b}>0\)

Tiếp tục có    \(a+b\)  và   \(a+2\sqrt{a}\cdot\sqrt{b}+b\)

                  \(\Rightarrow a+b< a+b+2\sqrt{a}\cdot\sqrt{b}\)

\(\Rightarrow\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)

  

12 tháng 11 2016

\(A=\left|x\right|\sqrt{1-x^2}\)

\(=\sqrt{x^2}\cdot\sqrt{1-x^2}\)

\(=\sqrt{x^2\left(1-x^2\right)}\)

\(\le\frac{x^2+1-x^2}{2}=\frac{1}{2}\) (Bđt Cô-si)

Dấu = khi \(x=\pm\frac{1}{\sqrt{2}}\)

Vậy \(Max_A=\frac{1}{2}\Leftrightarrow x=\pm\frac{1}{\sqrt{2}}\)

 

12 tháng 11 2016

cảm ơn bạn nha nha nha nha nha nha. ahihi vui quá. tớ làm thử qua các này mà tưởng không đưa vào căn được nên vất đi luôn òi. thankssssssssssssssssss

4 tháng 2 2020

ngữ văn ?