K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{3}{2}\left(-21-\dfrac{1}{3}+1+\dfrac{1}{3}\right)=\dfrac{3}{2}\cdot\left(-20\right)=-30\)

b: \(=\dfrac{2018}{2019}\left(13-13-\dfrac{2018}{2019}-\dfrac{1}{2019}\right)=-\dfrac{2018}{2019}\)

Ta có: \(\left(26^{2018}+3^{2018}\right)^{2019}=26^{2018\cdot2019}+3^{2018\cdot2019}\left(1\right)\)

          \(\left(26^{2019}+3^{2019}\right)^{2018}=26^{2019\cdot2018}+3^{2019\cdot2018}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(26^{2018}+3^{2018}\right)^{2019}=\left(26^{2019}+3^{2019}\right)^{2018}\)

AH
Akai Haruma
Giáo viên
23 tháng 2 2020

Lời giải:

$D=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+......+\frac{2018}{4^{2018}}+\frac{2019}{4^{2019}}$

$4D=1+\frac{2}{4}+\frac{3}{4^2}+....+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}$

Trừ theo vế:

\(3D=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{2018}}-\frac{2019}{4^{2019}}\)

\(\Rightarrow 12D=4+1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{2017}}-\frac{2019}{4^{2018}}\)

Trừ theo vế:
$9D=4-\frac{2019}{4^{2018}}+\frac{2019}{4^{2019}}-\frac{1}{4^{2018}}$

$=4-\frac{6061}{4^{2019}}< 4$

$\Rightarrow D< \frac{4}{9}<\frac{4}{8}$ hay $D< \frac{1}{2}$ (đpcm)

NV
29 tháng 3 2019

\(A=\left(26^{2018}+3^{2018}\right)^{2019}\)

\(B=\left(26^{2019}+3^{2019}\right)^{2018}\)

\(B=\left(26^{2018}.26+3.3^{2018}\right)^{2018}< \left(26^{2018}.26+3^{2018}.26\right)^{2018}\)

\(B< \left(26^{2018}+3^{2018}\right)^{2018}.26^{2018}< \left(26^{2018}+3^{2018}\right)^{2018}.\left(26^{2018}+3^{2018}\right)\)

\(\Rightarrow B< \left(26^{2018}+3^{2018}\right)^{2019}\Rightarrow B< A\)

a)\(2019-\left|x-2019\right|=x\)

\(\Rightarrow2019-x=\left|x-2019\right|\)

=>\(\left|x-2019\right|=-\left(x-2019\right)\)

=>\(x-2019\le0\)

=>\(x\le2019\)

b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)

        \(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)

\(\left|x+y-z\right|\ge0\forall x,y,z\)

=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)

mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)

6 tháng 11 2019

a, Ta có:

\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)

Xét x<2019 thì |x-2019|=-x+2019

Khi đó: 2019-(-x+2019)=x

\(\Leftrightarrow\)-x+2019=2019-x

\(\Leftrightarrow\)-x+2019+x=2019

\(\Leftrightarrow\)0x+2019=2019

\(\Leftrightarrow\)0x=0     (thỏa mãn)

Xét 2019\(\le\)x thì |x-2019|=x-2019

Khi đó 2019-(x-2019)=x

\(\Leftrightarrow\)2019-x+2019=x

\(\Leftrightarrow\)4038-x=x

\(\Leftrightarrow\)4038=2x

\(\Leftrightarrow\)x=2019(thỏa mãn)

Vậy .......................................................!!!