Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
x = 2013 => x + 1 = 2014
x2013 - 2014.x2012 + 2014.x2011 - 2010 + 2014x - 2014
= x2013 - (x + 1).x2012 + (x + 1).x2011 - 2010 + (x + 1)x - 2014
= x2013 - x2013 - x2012 + x2012 + x2011 - 2010 + x2 + x - 2014
= x2011 + x2 - x - 4024
Làm thì thấy nó có vấn đề ?????
ta có : x = 2013
=> x + 1 = 2014
Thay 2014 = x + 1 vào biểu thức , sau đó phân phối , là ra
a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)
\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)
\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\) (1)
Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)
Nên biểu thức (1) xảy ra khi \(x+2013=0\)
\(x=-2013\)
b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\) (2)
Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)
Nên biểu thức (2) xảy ra khi \(x-2011=0\)
\(x=2011\)
\(\frac{x-3}{2013}+\frac{x-4}{2012}=\frac{x-5}{2011}+\frac{x-6}{2010}\)
\(\Leftrightarrow\frac{x-3-2013}{2013}+\frac{x-2-2012}{2012}=\frac{x-5-2011}{2011}+\frac{x-6-2010}{2010}\)(mỗi vế trừ đi 2)
\(\Leftrightarrow\frac{x-2016}{2013}+\frac{x-2016}{2012}-\frac{x-2016}{2011}-\frac{x-2016}{2010}=0\)
\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
Mà \(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\ne0\)
\(\Rightarrow x-2016=0\Leftrightarrow x=2016\)
Cộng mỗi vế cho 1
Ta có: \(\frac{x-3-2013}{2013}+\frac{x-4-2012}{2012}=\frac{x-5-2011}{2011}+\frac{x-6-2010}{2010}\)
\(=>\left(\frac{x-2016}{2013}+\frac{x-2016}{2012}\right)-\left(\frac{x-2016}{2011}+\frac{x-2016}{2010}\right)=0\)
\(=>\left(x-2016\right).\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)\)
Mà \(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\ne0\)
\(=>x-2016=0\\ =>x=2016\)
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
<=> \(\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
=> x+1=0
<=> x=-1
b) \(\dfrac{x+4}{2010}+1+\dfrac{x+3}{2011}+1=\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\)
<=> \(\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)
đến đây tương tự a
a) Ta có:
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Leftrightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\left(Vì:\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\)
\(\Leftrightarrow x=-1\)
Vậy....
b)Sửa lại đề nha
Ta có:
\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)
\(\Leftrightarrow\dfrac{x+4}{2010}+1+\dfrac{x+3}{2011}+1=\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\)
\(\Leftrightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)
Lý giải tương tự câu a và kết luận nha
Nhận thấy \(x=2013;2014\) là 2 nghiệm
- Với \(x>2014\Rightarrow\left\{{}\begin{matrix}x-2013>1\\x-2014>0\end{matrix}\right.\) \(\Rightarrow\left(x-2013\right)^{2010}+\left(x-2014\right)^{2012}>1\) pt vô nghiệm
- Với \(x< 2013\Rightarrow\left\{{}\begin{matrix}\left|x-2013\right|>0\\\left|x-2014\right|>1\end{matrix}\right.\)
\(\Rightarrow\left(x-2013\right)^{2010}+\left(x-2014\right)^{2012}>1\) pt vô nghiệm
- Với \(2013< x< 2014\Rightarrow\left\{{}\begin{matrix}0< x-2013< 1\\0< 2014-x< 1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2013\right)^{2010}< x-2013\\\left(x-2014\right)^{2012}=\left(2014-x\right)^{2012}< 2014-x\end{matrix}\right.\)
\(\Rightarrow\left(x-2013\right)^{2010}+\left(x-2014\right)^{2012}< x-2013+2014-x=1\)
Pt vô nghiệm
Vậy pt có đúng 2 nghiệm \(x=\left\{2013;2014\right\}\)
ta có ( x - 2013 )2010 > hoặc = 0
tương tự (x - 2014 )2012 > hoặc = 0
vì 2 biểu thức này + với nhau = 1
=> nếu ( x - 2013 )2010 = 1 => x = 2014 ( 2012 thì nếu trừ 2014 sẽ = -2)
còn nếu ( x - 2014 )2012 = 1 => x = 2013 ( 2015 thì nếu trừ 2013 sẽ = 2)
=> x = 2013;2014
Này Vũ Hữu Trường minh, bn có thể giải giúp mk theo cách 5 trường hợp: x=2013, x=2014, x<2013, x>2014 và 2013<x<2014 đc ko. Bn ko cần làm 4 trường hợp đầu, chỉ cần giải giúp mk TH cuối thui: 2013<x<2014. Phiền bn một tí nha, mk sắp phải nộp rùi. Cám ơn bn trxVũ Hữu Trường minh