K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2015

Vi l x - 3,5 l lớn hơn bằng 0 với mọi x

=> 0,5 - lx-3,5l  nhỏ hơn  bằng 0,5 

Vậy  GTLN của A là 0,5 khi x - 3,5 = 0 => x = 3,5

4 tháng 4 2017

Giá trị nhỏ nhất của A là 2011 (vì A đạt giá trị nhỏ nhất khi /x-y/ + /x+1/ đạt giá trị nhỏ nhất hay bằng 0)

4 tháng 4 2017

giá trị nhỏ nhất là 2011

đúng 100% !tk nha

2 tháng 1 2015

a) muốn A đạt giá trị lớn nhất thì /x-5/ đạt giá trị nhỏ nhât

mà /x-5/ đạt giá trị nhỏ nhất bằng 0

suy ra giá trị lớn nhất của A là 1000 khi x=5

b) muốn B đạt giá trị nhỏ nhất t hì /y-3/ đạt già trị nhỏ nhất

mà /y-3/ đạt giá trị nhỏ nhất bằng 0

suy ra giá trị nhỏ nhất của B bằng 50 khi y=3

c) muốn C đạt giá trị nhỏ nhất thì /x-100/ và /y+200/ đạt giá trị nhỏ nhất

mà /x-100/ đạt giá trị nhỏ nhất bằng 0

    /y+200/ đạt giá trị nhỏ nhất bằng 0

suy ra giá trị nhỏ nhất của C bằng -1 khi x=100 và y=-200

15 tháng 12 2017

a) muốn A đạt giá trị lớn nhất thì /x-5/ đạt giá trị nhỏ nhât

mà /x-5/ đạt giá trị nhỏ nhất bằng 0

suy ra giá trị lớn nhất của A là 1000 khi x=5

b) muốn B đạt giá trị nhỏ nhất t hì /y-3/ đạt già trị nhỏ nhất

mà /y-3/ đạt giá trị nhỏ nhất bằng 0

suy ra giá trị nhỏ nhất của B bằng 50 khi y=3

c) muốn C đạt giá trị nhỏ nhất thì /x-100/ và /y+200/ đạt giá trị nhỏ nhất

mà /x-100/ đạt giá trị nhỏ nhất bằng 0

    /y+200/ đạt giá trị nhỏ nhất bằng 0

suy ra giá trị nhỏ nhất của C bằng -1 khi x=100 và y=-200

7 tháng 3 2019

\(A=\frac{x-5}{x-3}=\frac{x-3-2}{x-3}=\frac{x-3}{x-3}-\frac{2}{x-3}=1-\frac{2}{x-3}\)

Để A đạt giá trị nhỏ nhất thì \(\frac{2}{x-3}\) đạt giá trị lớn nhất \(\Leftrightarrow x-3\)đạt giá trị nguyên dương nhỏ nhất \(\Leftrightarrow x-3=1\Leftrightarrow x=4\)

Vậy với x=4 thì A đạt giá trị nhỏ nhất.

8 tháng 5 2019

a) \(|x|\ge0\forall x\Rightarrow|x|+5\ge5\forall x\)

Do đó GTNN của biểu thức là 5 khi x=0

b) \(|x+4|\ge0\forall x\Rightarrow A\ge-2007\forall x\)

Do đó GTNN của A là -2007 khi x + 4 = 0 hay x = - 4

8 tháng 5 2019

a) Để \(|x|+5\) đạt GTNN => \(|x|+5=0\) => \(x=0\)

b) Để \(A=|x+4|-2007\) đạt GTNN => \(|x+4|-2007=0\) => \(|x+4|=0\)=> \(x+4=0\)=> \(x=-4\)