K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

a)

Điều kiện xác định của  a 3 là 

a 3 ≥ 0 ⇒ a ≥ 0

b) Điều kiện -5a ≥ 0 => a ≤ 0

c) Điều kiện 4 – a ≥ 0 => -a ≥ -4 = > a ≤ 4

d) Điều kiện 3a + 7 ≥ 0 => 3a ≥ -7

a ≥ - 7 3

a, ĐK \(\hept{\begin{cases}a\ge1\\a\le-1\end{cases}}\)

b, ĐK a\(\le\)2

16 tháng 6 2019

a) Ta có: \(\sqrt{a^2-1}=\sqrt{\left(a+1\right)\left(a-1\right)}\)

Để \(\sqrt{a^2-1}\) có nghĩa thì \(\left(a+1\right)\left(a-1\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}a+1\le0\\a-1\ge0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a\le-1\\a\ge1\end{cases}}\)

a, \(a\ge0\)

b, a \(\le0\)

c, \(a\le4\)

d, \(a\ge-\dfrac{7}{3}\)

25 tháng 5 2019

a)a≥0

b)a≤0

C)a≤4

d)a≥\(\frac{-7}{3}\)

Căn thức có nghĩa \(\Leftrightarrow x^2-3\ge0\Rightarrow\sqrt{3}\le x\le-\sqrt{3}\)

\(\Leftrightarrow x^2-2x-3\ge0\)

\(\Leftrightarrow x\left(x+2\right)\ge0\)

\(\Leftrightarrow x^2+5x+6\ge0\)

3 tháng 7 2017

Bạn tìm điều kiện để cái trong căn lớn hơn bằng 0 la ok luôn mà

13 tháng 4 2021

a

căn có nghĩa 

\(\Leftrightarrow\frac{a}{3}\ge0\)   

\(\Leftrightarrow a\ge0\)   

b

căn có nghĩa 

\(\Leftrightarrow-5a\ge0\)   

\(\Leftrightarrow b\le0\left(-5\le0\right)\)   

c

căn có nghĩa 

\(\Leftrightarrow4-a\ge0\)   

\(\Leftrightarrow-a\ge0-4\)   

\(\Leftrightarrow-a\ge-4\)   

\(\Leftrightarrow a\le4\)   

d

căn có nghĩa

\(\Leftrightarrow3a+7\ge0\)   

\(\Leftrightarrow a\ge-\frac{7}{3}\)

20 tháng 5 2021

a>0

10 tháng 9 2021

B)  luôn có nghĩa với bất kì giá trị nào của X ;   X E R

A) luôn có nghĩa với bất kì giá trị nào của X ;   X E R

24 tháng 6 2019

a) \(\sqrt{x^2-8x+18}=\sqrt{\left(x-4\right)^2+2}\)

Ta có:\(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2+2\ge0\)

Vậy biểu thức \(\sqrt{x^2-8x+18}\)thỏa mãn với mọi x.

b) Để \(\sqrt{3x-2}+\sqrt{3-2x}\)có nghĩa thì \(\hept{\begin{cases}3x-2>0\\3-2x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>\frac{2}{3}\\x< \frac{3}{2}\end{cases}}\Leftrightarrow\frac{2}{3}< x< \frac{3}{2}\)

Vậy \(ĐKXĐ:\frac{2}{3}< x< \frac{3}{2}\)

c) Để \(\frac{3x+4}{x-2}\)có nghĩa thì \(x\ne2\)

Để \(\sqrt{\frac{3x+4}{x-2}}\)thì 3x + 4 và x - 2 hoặc cùng dương hoặc cùng âm hoặc 3x + 4 = 0

\(TH1:3x+4=0\Leftrightarrow x=\frac{-4}{3}\)

\(TH2:\hept{\begin{cases}3x+4>0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{-4}{3}\\x>2\end{cases}}\Leftrightarrow x>2\)

\(TH3:\hept{\begin{cases}3x+4< 0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{-4}{3}\\x< 2\end{cases}}\Leftrightarrow x< \frac{-4}{3}\)

24 tháng 6 2019

Câu b) Để \(\sqrt{3x-2}+\sqrt{3-2x}\)có nghĩa thì \(\hept{\begin{cases}3x-2\ge0\\3-2x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{2}{3}\\x\le\frac{3}{2}\end{cases}}\)

Vậy \(ĐKXĐ:\frac{2}{3}\le x\le\frac{3}{2}\)