K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2017

+ t = 0 ⇒ điểm M(2; -3; 1) ∈ d

+ t = 1 ⇒ điểm N(3; -1; 4) ∈ d.

 Hình chiếu của M trên (Oxy) là M’(2 ; -3 ; 0).

Hình chiếu của N trên (Oxy) là : N’(3 ; -1 ; 0).

⇒ Hình chiếu của d trên (Oxy) chính là đường thẳng d’ đi qua M’ và N’.

⇒ d’ nhận Giải bài 2 trang 89 sgk Hình học 12 | Để học tốt Toán 12 là 1 vtcp.

QUẢNG CÁO

Giải bài 2 trang 89 sgk Hình học 12 | Để học tốt Toán 12

3 tháng 4 2017

a) Xét mặt phẳng (P) đi qua d và (P) ⊥ (Oxy), khi đó ∆ = (P) ∩ (Oxy) chính là hình chiếu vuông góc của d lên mặt phẳng (Oxy).

Phương trình mặt phẳng (Oxy) có dạng: z = 0 ; vectơ (0 ; 0 ;1) là vectơ pháp tuyến của (Oxy), khi đó ( 1 ; 2 ; 3) là cặp vectơ chỉ phương của mặt phẳng (P).

= (2 ; -1 ; 0) là vectơ pháp tuyến của (P).

Phương trình mặt phẳng (P) có dạng:

2(x - 2) - (y + 3) +0.(z - 1) = 0

hay 2x - y - 7 = 0.

Đường thẳng hình chiếu ∆ thỏa mãn hệ:

Điểm M0( 4 ; 1 ; 0) ∈ ∆ ; vectơ chỉ phương của ∆ vuông góc với và vuông góc với , vậy có thể lấy = (1 ; 2 ; 0).

Phương trình tham số của hình chiếu ∆ có dạng:

.

Chú ý :

Ta có thể giải bài toán này bằng cách sau:

Lấy hai điểm trên d và tìm hình chiếu vuông góc của nó trên mặt phẳng (Oxy). Đường thẳng đi qua hai điểm đó chính là hình chiếu cần tìm.

Chẳng hạn lấy M1( 2 ; 3 ; -1) ∈ d và M2( 0 ; -7 ; -5) ∈ d, hình chiếu vuông góc của

M1 trên (Oxy) là N1 (2 ; -3 ; 0), hình chiếu vuông góc của M2 trên (Oxy) là N2(0 ; -7 ; 0).

Đườn thẳng ∆ qua N1, N­2 chính là hình chiếu vuông góc của d lên (Oxy).

Ta có : (-2 ; -4 ; 0) // (1 ; 2 ; 0).

Phương trình tham số của ∆ có dạng:

.

b) Tương tự phần a), mặt phẳng (Oxy) có phương trình x = 0.

lấy M1( 2 ; 3 ; -1) ∈ d và M2( 0 ; -7 ; -5) ∈ d, hình chiếu vuông góc của

M1 trên (Oxy) là M'1 (0 ; -3 ; 1), hình chiếu vuông góc của M2 trên (Oyz) là chính nó.

Đườn thẳng ∆ qua M'1, M­2 chính là hình chiếu vuông góc của d lên (Oyz).

Ta có: (0 ; -4 ; -6) // (0 ; 2 ; 3).

Phương trình M'12 có dạng:

.


7 tháng 4 2018

Hình chiếu của M trên (Oyz) là : M 1 (0 ; -3 ; 1)

Hình chiếu của N trên (Oyz) là : N 1 (0 ; -1 ; 4)

⇒ Hình chiếu của d trên (Oyz) chính là đường thẳng  d 1 đi qua M 1  và  N 1

⇒ d1 nhận Giải bài 2 trang 89 sgk Hình học 12 | Để học tốt Toán 12 là 1 vtcp

Giải bài 2 trang 89 sgk Hình học 12 | Để học tốt Toán 12

22 tháng 5 2017

Đường thẳng d đi qua A (1; 1; 9) và có vectơ chỉ phương \(\overrightarrow{a}\left(1;1;0\right)\). Gọi (Q) là mặt phẳng đi qua d và vuông góc với (P)

Ôn tập chương III

19 tháng 10 2019

Đáp án D

Gọi M(1+2t;2t;2-t) là giao điểm của d và (Oxy): z =0

Gọi N(1;0;2) là điểm thuộc d. Hình chiếu của N lên (Oxy)  là I(1;0;0)

là một véc tơ chỉ phương của d’

23 tháng 5 2017

a) Gọi \(\overrightarrow{u}\left(1;-2;-1\right)\) là vectơ chỉ phương của d, giả sử \(\overrightarrow{v}\left(a;b;c\right)\)Ôn tập cuối năm môn hình học 12

8 tháng 5 2017

22 tháng 4 2019

Đáp án : C

6 tháng 1 2017

19 tháng 1 2018

Đáp án C

Hình chiếu của A,B trên mp (Oxy) là A'(1;0;0); B'(3;-1;0). Có  A B →   = ( 2 ; - 1 ; 0 )  là vtcp của A’B’ nên phương trình tham số của A’B’ là

x = 1 + 2 t y = - t z = 0