Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
b) Cách vẽ lục giác đều có tất cả các đỉnh nằm trên đường tròn (O)
Vẽ các dây cung AB = BC = CD = DE = EF = FA = R = 2 cm
(Ta đã nêu được cách chia đường tròn thành sáu cung bằng nhau tại bài tập 10 SGK trang 71)
c) Vì các dây cung AB = BC = CD = DE = EF = FA bằng nhau nên khoảng cách từ O đến các dây là bằng nhau ( định lý liên hệ giữa dây cung và khoảng cách từ tâm đến dây)
Cách vẽ lục giác đều có tất cả các đỉnh nằm trên đường tròn (O)
Vẽ các dây cung AB = BC = CD = DE = EF = FA = R = 2 cm
(Ta đã nêu được cách chia đường tròn thành sáu cung bằng nhau tại bài tập 10 SGK trang 71)
*Cách vẽ:
- Vẽ đường tròn tâm O bán kính 1,5cm
- Vẽ hai đường kính AC và BD vuông góc với nhau
- Nối AB, BC , CD, DA lại với nhau ta được hình vuông ABCD nội tiếp trong đường tròn (O; 1,5)
*Chứng minh:
Ta có : OA = OC , OB =OD
Suy ra ABCD là hình bình hành
Mặt khác : AC = BD và AC ⊥ BD
Suy ra ABCD là hình vuông
A B O M C D E F H G
1) Vì ^AEB chắn nửa đường tròn (O) nên EA vuông góc EB. Do đó BE // CM.
Suy ra tứ giác BECM là hình thang cân (Vì 4 điểm B,C,M,E cùng thuộc (O))
Kết hợp với M là điểm chính giữa cung AB suy ra CE = BM = AM hay (CE = (AM
Vậy thì tứ giác ACEM là hình thang cân (đpcm).
2) Đường tròn (O) có M là điểm chính giữa cung AB, suy ra MO vuông góc AB
Từ đó MO // CH suy ra ^HCM = ^OMC = ^OCM. Vậy CM là phân giác của ^HCO (đpcm).
3) Kẻ đường kính MG của đường tròn (O). Dễ thấy ^DOG = ^DCG (= 900)
Suy ra 4 điểm C,D,O,G cùng thuộc đường tròn đường kính DG
Mặt khác AB là trung trực của MG, D thuộc AB nên DG = DM
Theo mối quan hệ giữa đường kính và dây ta có:
\(CD\le DG=DM\Leftrightarrow2CD\le DM+CD=CM\Leftrightarrow CD\le\frac{1}{2}CM\)
Lại có tứ giác ACEM là hình thang cân, do vậy \(CD\le\frac{1}{2}CM=\frac{1}{2}AE\)(đpcm).
Dấu "=" xảy ra khi và chỉ khi C là điểm chính giữa cung AB không chứa M của (O).