K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

*vẽ hình vuông:

- Vẽ đường tròn (O;R)

- Vẽ hai đường kính AC và BD vuông góc với nhau

- Nối AB ,BC ,CD ,DA ta được tứ giác ABCD là hình vuông nội tiếp trong đường tròn (O;R)

*tam giác đều:

-Từ A đặt liên tiếp các cung bằng nhau và dây căng cung tương ứng có độ dài bằng R:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

- Nối A A 2 ,  A 2 A 3  , A 3 A ta được tam giác A A 2 A 3  là tam giác đều nhận O làm tâm

16 tháng 5 2018

a)

Giải bài tập Toán 9 | Giải Toán lớp 9

b) Cách vẽ lục giác đều có tất cả các đỉnh nằm trên đường tròn (O)

Vẽ các dây cung AB = BC = CD = DE = EF = FA = R = 2 cm

(Ta đã nêu được cách chia đường tròn thành sáu cung bằng nhau tại bài tập 10 SGK trang 71)

c) Vì các dây cung AB = BC = CD = DE = EF = FA bằng nhau nên khoảng cách từ O đến các dây là bằng nhau ( định lý liên hệ giữa dây cung và khoảng cách từ tâm đến dây)

12 tháng 4 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

*Cách vẽ:

- Vẽ đường tròn tâm O bán kính 1,5cm

- Vẽ hai đường kính AC và BD vuông góc với nhau

- Nối AB, BC , CD, DA lại với nhau ta được hình vuông ABCD nội tiếp trong đường tròn (O; 1,5)

*Chứng minh:

Ta có : OA = OC , OB =OD

Suy ra ABCD là hình bình hành

Mặt khác : AC = BD và AC ⊥ BD

Suy ra ABCD là hình vuông

8 tháng 4 2018

Giải bài tập Toán 9 | Giải Toán lớp 9

12 tháng 7 2018

Ai giỏi giúp mik vs nha mik cần rất gấp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0