Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (from geogebra :V)
b, (do không rõ, mình gộp cả 2 điều kiện nhé)
Dựa vào đồ thị, điều kiện của x sao cho \(0< f\left(x\right)< 1\) là \(1< x< 5\).
Chúc bạn học tốt nha.
1: Phương trình hoành độ giao điểm là
\(x^2-2x-1=x-1\)
=>x(x-3)=0
=>x=0 hoặc x=3
Khi x=0 thì y=-1
Khi x=3 thì y=2
2: Phương trình hoành độ giao điểm là:
\(-x+3=-x^2-4x+1\)
\(\Leftrightarrow x^2+3x+2=0\)
=>x=-1 hoặc x=-2
Khi x=-1 thì y=1+3=4
Khi x=-2 thì y=2+3=5
3: Phương trình hoành độ giao điểm là:
\(x^2-4x+4=2x-5\)
\(\Leftrightarrow x=3\)
=>y=1
\(y\left(\frac{3}{4}\right)=y\left(-\frac{3}{4}\right)=\frac{1}{8}\)
Nhìn vào đồ thị, để pt \(\left|2x^2-3\left|x\right|+1\right|=m\) có 8 nghiệm pb thì \(0< m< \frac{1}{8}\)
a) Bảng biến thiên
Đồ thị hàm số
Đồ thị là đường thẳng đi qua 2 điểm:
+ Giao với trục tung P(0,-1)
+ Giao với trục hoành Q(2, 0)
b) Bảng biến thiên
Đồ thị hàm số
Đồ thị là đường thẳng đi qua 2 điểm:
+ Giao với trục tung P(0,4)
+ Giao với trục hoành Q(2, 0)
c) y=√x2y=x2 = |x| ={−x,x≤0x,x>0{−x,x≤0x,x>0
Bảng biến thiên
Đồ thị hàm số
d) y = |x+1| = {−x−1,x≤−1x+1,x>−1{−x−1,x≤−1x+1,x>−1
Bảng biến thiên
Đồ thị hàm số
Điểm \(\left(1;1\right)\) thuộc đồ thị, điểm \(\left(1;\dfrac{3}{2}\right)\) không thuộc đồ thị .
Đồ thị hàm số là hợp của hai phần:
+ Phần thứ nhất là nửa đường thẳng x + 1 giữ lại các điểm có hoành độ ≥ 1.
+ Phần thứ hai là nửa đường thẳng –2x + 4 giữ lại các điểm có hoành độ < 1.