K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)

14 tháng 8 2016

vmax = ωA; amax = ω2A => ω = 10π (rad/s)

v1 = +1,5 m/s = vmax/2  và thế năng đang giảm => x1 = -A√3/2

a2 = -15π => x2 = A/2

Con lắc lò xo nằm ngang - năng lượng dao động điều hòa

=> Δt = T/4 = 0,05 s

6 tháng 8 2015

\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)

Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)

Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.

10π v 5π M N -10π O

Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600

Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)

Đáp án B.

7 tháng 8 2015

Phynit: cam on ban nhieu nhe :)

 

5 tháng 12 2019

Đáp án C

21 tháng 10 2018

Chọn đáp án D

9 tháng 2 2017

Ở VTCB lò xo dãn: \(\Delta \ell_0=10cm\)

Tần số góc: \(\omega=\sqrt{\dfrac{g}{\Delta\ell_0}}=10(rad/s)\)

Áp dụng công thức: \(v_0^2=v^2+\dfrac{a^2}{\omega^2}\)

\(\Rightarrow v_0^2=20^2+\dfrac{(200\sqrt 3)^2}{10^2}\)

\(\Rightarrow v_0=40(cm/s)\)

Biên độ dao động: \(A=\dfrac{v_0}{\omega}=4cm\)

Tỉ số giữa lực đàn hồi cực đại và cực tiểu:

\(\dfrac{F_{dhmax}}{F_{dhmin}}=\dfrac{k.(\Delta\ell_0+A)}{k.(\Delta\ell_0-A)}=\dfrac{\Delta\ell_0+A}{\Delta\ell_0-A}=\dfrac{10+4}{10-4}=\dfrac{7}{3}\)