Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\((\sqrt{n+1}+\sqrt{n})U_n=\frac{2}{2n+1}\)
\(\Rightarrow U_n=\frac{2}{(2n+1)(\sqrt{n+1}+\sqrt{n})}=\frac{2(\sqrt{n+1}-\sqrt{n})}{2n+1}\)
\(=\frac{2(\sqrt{n+1}-\sqrt{n})}{(n+1)+n}<\frac{2(\sqrt{n+1}-\sqrt{n})}{2\sqrt{n(n+1)}}\) (áp dụng bđt am-gm thì \((n+1)+n\geq 2\sqrt{n(n+1)}\), dấu bằng không xảy ra vì \(n\neq n+1\))
hay \(U_n< \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Do đó:
\(U_1+U_2+...+U_{2010}< \frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-...+\frac{1}{\sqrt{2010}}-\frac{1}{\sqrt{2011}}\)
\(\Leftrightarrow U_1+U_2+..+U_{2010}< 1-\frac{1}{\sqrt{2011}}< \frac{1005}{1006}\)
Ta có đpcm.
a) Năm số hạng đầu của dãy số là 3, √10, √11, √12, √13.
b) Ta có: u1 = 3 = √9 = √(1 + 8)
u2 = √10 = √(2 + 8)
u3 = √11 = √(3 + 8)
u4 = √12 = √(4 + 8)
...........
Từ trên ta dự đoán un = √(n + 8), với n ε N* (1)
Chứng minh công thức (1) bằng phương pháp quy nạp:
- Với n = 1, rõ ràng công thức (1) là đúng.
- Giả sử (1) đúng với n = k ≥ 1, tức là có uk = √(k + 8) với k ≥ 1.
Theo công thức dãy số, ta có:
uk+1 = .
Như vậy công thức (1) đúng với n = k + 1.
a) Năm số hạng đầu của dãy số là 3, √10, √11, √12, √13.
b) Ta có: u1 = 3 = √9 = √(1 + 8)
u2 = √10 = √(2 + 8)
u3 = √11 = √(3 + 8)
u4 = √12 = √(4 + 8)
...........
Từ trên ta dự đoán un = √(n + 8), với n ε N* (1)
Chứng minh công thức (1) bằng phương pháp quy nạp:
- Với n = 1, rõ ràng công thức (1) là đúng.
- Giả sử (1) đúng với n = k ≥ 1, tức là có uk = √(k + 8) với k ≥ 1.
Theo công thức dãy số, ta có:
uk+1 = .
Như vậy công thức (1) đúng với n = k + 1.
Ta phân tích \(n^2=\dfrac{1}{3}\left(n+1\right)^3-\dfrac{1}{2}\left(n+1\right)^2+\dfrac{1}{6}\left(n+1\right)-\dfrac{1}{3}n^3+\dfrac{1}{2}n^2-\dfrac{1}{6}n\)
\(\Rightarrow u_{n+1}-\dfrac{1}{3}\left(n+1\right)^3+\dfrac{1}{2}\left(n+1\right)^2-\dfrac{1}{6}\left(n+1\right)=u_n-\dfrac{1}{3}n^3+\dfrac{1}{2}n^2-\dfrac{1}{6}n\)
Đặt \(v_n=u_n-\dfrac{1}{3}n^3+\dfrac{1}{2}n^2-\dfrac{1}{6}n\Rightarrow\left\{{}\begin{matrix}v_1=1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{6}=1\\v_{n+1}=v_n\end{matrix}\right.\)
Từ \(v_{n+1}=v_n\Rightarrow v_{n+1}=v_n=v_{n-1}=...=v_1=1\)
\(\Rightarrow u_n-\dfrac{1}{3}n^3+\dfrac{1}{2}n^2-\dfrac{1}{6}n=1\Rightarrow u_n=\dfrac{1}{3}n^3-\dfrac{1}{2}n^2+\dfrac{1}{6}n+1\)
\(\Rightarrow u_n=1+\dfrac{2n^3-3n^2+n}{6}=1+\dfrac{n\left(n-1\right)\left(2n-1\right)}{6}\)
a. Năm số hạng đầu của dãy số
b. Dự đoán công thức số hạng tổng quát của dãy số:
un =√(n+8) (1)
Rõ ràng (1) đúng với n = 1
Giả sử (1) đúng với n = k, nghĩa là uk = √(k+8)
⇒ (1) đúng với n = k + 1
⇒ (1) đúng với mọi n ∈ N*.
Dễ dàng nhận ra dãy đã cho là dãy dương.
\(\Rightarrow u_1u_2...u_{n-1}>0\Rightarrow u_n>1\) ;\(\forall x>1\)
\(\Rightarrow u_1u_2...u_{n-1}>1\)
Ta có:
\(u_{n+1}-u_n=1+u_1u_2...u_n-u_n=1+u_n\left(u_1u_2...u_{n-1}\right)>0\)
\(\Rightarrow u_{n+1}>u_n\Rightarrow\) dãy tăng
\(u_1=1;u_2=4=2^2;u_3=9=3^2\)
Dự đoán: \(u_n=n^2\)
- Với \(n=1;2;3\) dãy đúng
- Giả sử \(u_k=k^2\)
- Ta cần chứng minh \(u_{k+1}=\left(k+1\right)^2\)
Thật vậy, ta có:
\(u_{k+1}=u_k+2k+1=k^2+2k+1=\left(k+1\right)^2\) (đpcm)