Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn lên ngạng hoặc và xem câu hỏi tương tự nha!
Nhớ k mk đấy nha!
thanks nhìu!
OK..OK..OK
Hình tự vẽ nha!
a, Xét đường tròn (O) có: \(\widehat{BAE}=\widehat{CAE}\) (AE là p/g của tam giác ABC)
Mà \(\widehat{BAE}\) và \(\widehat{CAE}\) là 2 góc nội tiếp chắn cung BE và EC
\(\Rightarrow\) \(sđ\stackrel\frown{BE}=sđ\stackrel\frown{EC}\) (hệ quả góc nt)
\(\Rightarrow\) E nằm chính giữa cung BC
\(\Rightarrow\) OE \(\perp\) BC
Lại có: AH \(\perp\) BC (gt)
\(\Rightarrow\) OE//AH (đpcm)
b, Xét đường tròn (O) có: \(\widehat{MAE}\) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung AE (gt)
\(\Rightarrow\) \(\widehat{MAE}\) = \(\dfrac{1}{2}sđ\stackrel\frown{AE}\) (t/c góc tạo bởi tia tiếp tuyến và dây cung) (1)
Xét đường tròn (O) có: \(\widehat{MDA}\) là góc có đỉnh nằm bên trong đường tròn (gt)
\(\Rightarrow\) \(\widehat{MDA}=\dfrac{1}{2}\cdot\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{EC}\right)\)
Mà \(sđ\stackrel\frown{EC}=sđ\stackrel\frown{BE}\) (cma)
\(\Rightarrow\) \(\widehat{MDA}=\dfrac{1}{2}\cdot\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{EC}\right)=\dfrac{1}{2}sđ\stackrel\frown{AE}\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\widehat{MAE}=\widehat{MDA}\)
Xét tam giác MAD có: \(\widehat{MAD}=\widehat{MDA}\) (cmt)
\(\Rightarrow\) \(\Delta\)MAD cân tại M (định lý tam giác cân)
\(\Rightarrow\) MA = MD (đpcm)
c, Xét đường tròn tâm (O) có: \(\widehat{AEB}\) và \(\widehat{ACB}\) là 2 góc nt chắn cung AB (gt)
\(\Rightarrow\) \(\widehat{AEB}=\widehat{ACB}\) (Hệ quả góc nt)
Xét tam giác ABE và tam giác ADC có:
\(\widehat{AEB}=\widehat{ACD}\) (cmt)
\(\widehat{BAE}=\widehat{DAC}\) (vì AE là p/g của tam giác ABC)
\(\Rightarrow\) \(\Delta ABE\) ~ \(\Delta ADC\) (gg)
\(\Rightarrow\) \(\dfrac{AB}{AD}=\dfrac{AE}{AC}\) (tỉ số đồng dạng)
\(\Rightarrow\) AD.AE = AC.AB (đpcm)
Chúc bn học tốt!
A B M C N D O E
a) Ta có : \(\widehat{ANC}=\widehat{ACM}=\frac{1}{2}\) sđ cung MC ; Góc CAN là góc chung của hai tam giác CAM và tam giác NAC
\(\Rightarrow\Delta CAM~\Delta NAC\left(g.g\right)\) \(\Rightarrow\frac{CM}{CN}=\frac{AC}{AN}\) (1)
Tương tự với tam giác BAM và tam giác NAB ta cũng có \(\widehat{MBA}=\widehat{ANB}=\frac{1}{2}\)sđ cung BM ; Góc NAB là góc chung của hai tam giác
\(\Rightarrow\Delta BAM~\Delta NAB\left(g.g\right)\Rightarrow\frac{AB}{AN}=\frac{BM}{BN}\) (2)
Mà AB = AC (vì AB và AB là hai tiếp tuyến của (O))
Do đó, kết hợp (1) và (2) ta có \(\frac{CM}{CN}=\frac{BM}{BN}\Rightarrow BM.CN=BN.CM\)
a, Ta có ^MAE = 1/2 sđ cungAE
^ADB là góc trong đỉnh D
=> ^BDA = (sđcungAB + sđcung CE)/2
Lại có ^BAE = ^EAC ( AE là phân giác )
mà ^BAE ( góc nt chắc cung BE )
^EAC ( góc nt chắn cung EC )
=> sđ cung CE = sđ cung BE
=> ^BDA = (sđ cung BA + sđ cung BE)/2 = sđAE/2
=> ^BDA = ^MAE vậy tam giác MAD cân tại M
b, Xét tam giác MAB và tam giác MCA
^M _ chung ; ^MAB = ^MCA (cùng chắn cung AB)
Vậy tam giác MAB ~ tam giác MCA (g.g)
\(\frac{MA}{MC}=\frac{MB}{MA}\Rightarrow MA^2=MB.MC\)
mà MA = MD ( do tam giác MAD cân tại M )
Vậy \(MD^2=MB.MC\)