Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ bảng kết luận của bài trước hãy dùng các đẳng thức b = 2b’, Δ = 4Δ’ để suy ra những kết luận sau:
Với b = 2b’, Δ = 4Δ’ ta có:
Nếu Δ' > 0 thì Δ > 0 phương trình có hai nghiệm
a) Nếu Δ > 0 thì từ phương trình (2) suy ra x + b/2a = ± √Δ/2a
Do đó,phương trình (1) có hai nghiệm x 1 = ( - b + √ Δ ) / 2 a ; x 2 = ( - b - √ Δ ) / 2 a
b) Nếu Δ = 0 thì từ phương trình (2) suy ra ( x + b / 2 a ) 2 = 0
Do đó,phương trình (1) có nghiệm kép x = (-b)/2a
Nếu Δ = 0 thì từ phương trình (2) suy ra (x + b/2a)2 =0
Do đó,phương trình (1) có nghiệm kép x = (-b)/2a
Nếu Δ > 0 thì từ phương trình (2) suy ra x + b/2a = ± √Δ/2a
Do đó,phương trình (1) có hai nghiệm x1 = (-b + √Δ)/2a; x2 = (-b-√Δ)/2a
Chúng ta sẽ ghép hai số 7 đầu tiên thành số 77 , sau đó có thể dùng phép toán và dấu ngoặc để tạo một biểu thức đúng có kết quả bằng 56 như sau :
77 - 7 - 7 - 7 = 56
77 - ( 7 + 7 ) - 7 = 56
77 - 7 - ( 7 + 7 ) = 56
77 - ( 7 + 7 + 7 ) = 56 .
a) Áp dụng bất đẳng thức Cô-si:
\(x\sqrt{1-y^2}+y\sqrt{1-x^2}=\sqrt{x^2\left(1-y^2\right)}+\sqrt{y^2\left(1-x^2\right)}\le\frac{x^2+1-y^2}{2}+\frac{y^2+1-x^2}{2}\)
\(=\frac{x^2+1-y^2+y^2-x^2+1}{2}=\frac{2}{2}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x^2=1-y^2\\y^2=1-x^2\end{matrix}\right.\)\(\Leftrightarrow x^2+y^2=1\)
b) Không
Áp dụng bất đẳng thức Cô-si cho hai số không âm, ta có :
\(\dfrac{a+b}{2}\ge\sqrt{ab}\) (1)
\(\dfrac{b+c}{2}\ge\sqrt{bc}\) (2)
\(\dfrac{c+a}{2}\ge\sqrt{ca}\) (3)
Cộng từng vế bất đẳng thức (1), (2), (3) ta được :
\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Vậy bất đẳng thức đã được chứng minh
Mở rộng cho bốn số a, b, c, d không âm, ta có bất đẳng thức :
\(a+b+c+d\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}\)
Mở rộng cho năm số a, b, c, d, e không âm, ta có bất đẳng thức : \(a+b+c+d+e\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{de}+\sqrt{ea}\)
áp dụng BĐT AM-GM với 2 số không âm
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
cộng các vế của BĐT ta có
\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
chia cả hai vế của BĐT cho 2 ta có đpcm
Với b = 2b’, Δ = 4Δ’ ta có:
a) Nếu Δ' > 0 thì Δ > 0 phương trình có hai nghiệm
b) Nếu Δ' = 0 thì Δ = 0 phương trình có nghiệm kép
x = (-b)/2a = (-2b')/2a = (-b')/a
c) Nếu Δ' < 0 thì Δ < 0 do đó phương trình vô nghiệm.