K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2019

Với b = 2b’, Δ = 4Δ’ ta có:

a) Nếu Δ' > 0 thì Δ > 0 phương trình có hai nghiệm

Giải bài tập Toán 9 | Giải Toán lớp 9

b) Nếu Δ' = 0 thì Δ = 0 phương trình có nghiệm kép

x = (-b)/2a = (-2b')/2a = (-b')/a

c) Nếu Δ' < 0 thì Δ < 0 do đó phương trình vô nghiệm.

26 tháng 4 2018

Với b = 2b’, Δ = 4Δ’ ta có:

Nếu Δ' > 0 thì Δ > 0 phương trình có hai nghiệm

Giải bài tập Toán 9 | Giải Toán lớp 9

12 tháng 7 2017

a) Nếu Δ > 0 thì từ phương trình (2) suy ra x + b/2a = ± √Δ/2a

Do đó,phương trình (1) có hai nghiệm  x 1   =   ( - b   +   √ Δ ) / 2 a ;   x 2   =   ( - b - √ Δ ) / 2 a

b) Nếu Δ = 0 thì từ phương trình (2) suy ra  ( x   +   b / 2 a ) 2   = 0

Do đó,phương trình (1) có nghiệm kép x = (-b)/2a

13 tháng 12 2017

Nếu Δ = 0 thì từ phương trình (2) suy ra (x + b/2a)2 =0

Do đó,phương trình (1) có nghiệm kép x = (-b)/2a

23 tháng 7 2019

Nếu Δ > 0 thì từ phương trình (2) suy ra x + b/2a = ± √Δ/2a

Do đó,phương trình (1) có hai nghiệm x1 = (-b + √Δ)/2a; x2 = (-b-√Δ)/2a

a: \(x=33^0\)

b: \(x=63^036'\)

c: \(x=48^0\)

 đã học cùng với sử dụng kĩ năng cơ bản của các ngoặc kết hợp lại với nhau sao cho tính ra kBạn Có 5 số (77777)tự do? vận dụng phép toánết quả 56?chú ý dùng 5 số(77777) trong phép toán?không được sử dụng số nào khác 7 là được?vd:7x7+7=56 kết quả này đúng?nhưng mới dùng có 3 số 7?vd2:7x7:7+7-7+49=56 kết quả này đúng? sử dụng 5 số 7 nhưng đã sử dụng thêm số khác số 7?do vậy vẫn...
Đọc tiếp

 đã học cùng với sử dụng kĩ năng cơ bản của các ngoặc kết hợp lại với nhau sao cho tính ra kBạn Có 5 số (77777)tự do? vận dụng phép toánết quả 56?chú ý dùng 5 số(77777) trong phép toán?không được sử dụng số nào khác 7 là được?

  1. vd:7x7+7=56 kết quả này đúng?nhưng mới dùng có 3 số 7?
  2. vd2:7x7:7+7-7+49=56 kết quả này đúng? sử dụng 5 số 7 nhưng đã sử dụng thêm số khác số 7?do vậy vẫn chưa chấp nhận lời giải này?
  • gợi ý: sử dụng IQ(Chất xám) bạn đang có để giải quyết triệt để đầu bài trên?
  • có 5 số (77777) tự do?
  • dùng 5 số (77777) trong phép toán?
  • tính toán đơn giản kết hợp với ngoặc để kết quả xuất hiện bằng 56.
  1. Kính mời tất cả các thầy cô cùng các bạn học sinh và mọi người ở mọi lứa tuổi sẽ tìm ra được kết quả cách giải cho bài toán hay này?
  2. tôi tin là bạn sẽ tìm ra được lời giải hay hơn lời giải của tôi đang có?
  3. mọi ý kiến dóng góp xin gửi về ních mail: cuongcuavuive@gmail.com hoặc qua số điện thoại 0966269831.
  4. mình xin chân thành cảm ơn!
1
15 tháng 11 2014

Chúng ta sẽ ghép hai số 7 đầu tiên thành số 77 , sau đó có thể dùng phép toán và dấu ngoặc để tạo một biểu thức đúng có kết quả bằng 56 như sau :

77 - 7 - 7 - 7 = 56

77 - ( 7 + 7 ) - 7 = 56

77 - 7 - ( 7 + 7 ) = 56

77 - ( 7 + 7 + 7 ) = 56 .

6 tháng 8 2019

a) Áp dụng bất đẳng thức Cô-si:

\(x\sqrt{1-y^2}+y\sqrt{1-x^2}=\sqrt{x^2\left(1-y^2\right)}+\sqrt{y^2\left(1-x^2\right)}\le\frac{x^2+1-y^2}{2}+\frac{y^2+1-x^2}{2}\)

\(=\frac{x^2+1-y^2+y^2-x^2+1}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x^2=1-y^2\\y^2=1-x^2\end{matrix}\right.\)\(\Leftrightarrow x^2+y^2=1\)

b) Không

27 tháng 5 2017

Áp dụng bất đẳng thức Cô-si cho hai số không âm, ta có :

\(\dfrac{a+b}{2}\ge\sqrt{ab}\) (1)

\(\dfrac{b+c}{2}\ge\sqrt{bc}\) (2)

\(\dfrac{c+a}{2}\ge\sqrt{ca}\) (3)

Cộng từng vế bất đẳng thức (1), (2), (3) ta được :

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Vậy bất đẳng thức đã được chứng minh

Mở rộng cho bốn số a, b, c, d không âm, ta có bất đẳng thức :

\(a+b+c+d\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}\)

Mở rộng cho năm số a, b, c, d, e không âm, ta có bất đẳng thức : \(a+b+c+d+e\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{de}+\sqrt{ea}\)

25 tháng 4 2017

áp dụng BĐT AM-GM với 2 số không âm

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(a+c\ge2\sqrt{ac}\)

cộng các vế của BĐT ta có

\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

chia cả hai vế của BĐT cho 2 ta có đpcm