Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết ta chứng minh bất đẳng thức tổng quát : với n là là số tự nhiên lớn hơn 1 thì :
\(2\sqrt{n-2< 1+1\sqrt{2}+1\sqrt{3}+....+1\sqrt{n}< 2\sqrt{n}-12n-2< 1+12+13+...+1n< 2n-1\left(\cdot\right)\left(\cdot\right)}\)Xét số hạng thứ kk trong dãy : (2 bé hơn hoặc k bé hơn hoặc bằng n ).(2 bé hơn hoặc bằng k bé hơn hoặc bằng n )
Ta có : \(1\sqrt{k>2\sqrt{k}+\sqrt{k}+1=2\left(\sqrt{k}+1-\sqrt{k}\right)1k>2k+k+1=2\left(k+1-k\right)v\text{à}}1\sqrt{k}< 2\sqrt{k}+\sqrt{k}-1=2\left(\sqrt{k}-\sqrt{k}-1\right)1k< 2k+k-1\)\(=2\left(k-k-1\right)\)
Do đó : \(1+1\sqrt{2}+...+1\sqrt{n}>2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+....+\sqrt{n}+1-\sqrt{n}\right)=2\left(\sqrt{n}+1-1\right)>2\sqrt{n}-21+12+.....+1n\)\(>2\left(2-1+3-2+...+n+1-n\right)=2\left(n+1-1\right)>2n-2v\text{à}1+1\sqrt{2}+.....+1\sqrt{n}< 1+2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{n}-\sqrt{n}-1\right)\)\(=1+2\left(\sqrt{n}-1\right)=2\sqrt{n}-11+12+...+1n< 1+2\left(2-1+3-2+...+n-n-1\right)=1+2\left(n-1\right)=2n-1\)Đến đây áp dụng (*)(*) với n=100n=100 thì 19<a<2019<a<20 nên a không phải là số tự nhiên
a) Ta có: \(3\sqrt{2}+4\sqrt{8}-\sqrt{18}\)
\(=\sqrt{2}\left(3+4\cdot2-3\right)\)
\(=8\sqrt{2}\)
b) Ta có: \(\sqrt{3}-\frac{1}{3}\sqrt{27}+2\sqrt{507}\)
\(=\sqrt{3}\left(1-\frac{1}{3}\cdot\sqrt{9}+2\cdot\sqrt{169}\right)\)
\(=\sqrt{3}\left(1-1+26\right)\)
\(=26\sqrt{3}\)
c) Ta có: \(\sqrt{25a}+\sqrt{49a}-\sqrt{64a}\)
\(=\sqrt{25}\cdot\sqrt{a}+\sqrt{49}\cdot\sqrt{a}-\sqrt{64}\cdot\sqrt{a}\)
\(=\sqrt{a}\left(5+7-8\right)\)
\(=4\sqrt{a}\)
d) Ta có: \(-\sqrt{36b}-\frac{1}{3}\sqrt{54b}+\frac{1}{5}\sqrt{150b}\)
\(=-\sqrt{6b}\cdot\sqrt{6}-\frac{1}{3}\cdot\sqrt{6b}\cdot\sqrt{9}+\frac{1}{5}\cdot\sqrt{6b}\cdot\sqrt{25}\)
\(=-\sqrt{6b}\left(\sqrt{6}+1-1\right)\)
\(=-\sqrt{6b}\cdot\sqrt{6}=-6\sqrt{b}\)
Bài 1:
\(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2+3+2\sqrt{2.3}}\)
\(=\sqrt{(\sqrt{2}-\sqrt{3})^2}+\sqrt{\sqrt{2}+\sqrt{3})^2}\)
\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
\(B=(\sqrt{10}+\sqrt{6})\sqrt{8-2\sqrt{15}}\)
\(=(\sqrt{10}+\sqrt{6}).\sqrt{3+5-2\sqrt{3.5}}\)
\(=(\sqrt{10}+\sqrt{6})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=\sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=\sqrt{2}(5-3)=2\sqrt{2}\)
\(C=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
\(C^2=8+2\sqrt{(4+\sqrt{7})(4-\sqrt{7})}=8+2\sqrt{4^2-7}=8+2.3=14\)
\(\Rightarrow C=\sqrt{14}\)
\(D=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{2}\sqrt{3-\sqrt{5}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{6-2\sqrt{5}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{5+1-2\sqrt{5.1}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{(\sqrt{5}-1)^2}\)
\(=(3+\sqrt{5})(\sqrt{5}-1)^2=(3+\sqrt{5})(6-2\sqrt{5})=2(3+\sqrt{5})(3-\sqrt{5})=2(3^2-5)=8\)
Bài 2:
a) Bạn xem lại đề.
b) \(x-2\sqrt{xy}+y=(\sqrt{x})^2-2\sqrt{x}.\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2\)
c)
\(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=(\sqrt{x}.\sqrt{y}+2\sqrt{x})-(3\sqrt{y}+6)\)
\(=\sqrt{x}(\sqrt{y}+2)-3(\sqrt{y}+2)=(\sqrt{x}-3)(\sqrt{y}+2)\)
a, \(=7\sqrt{2}-6\sqrt{2}+\frac{1}{2}.2\sqrt{2}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
b, \(=4\sqrt{a}+4\sqrt{10a}-9\sqrt{10a}=4\sqrt{a}-5\sqrt{10a}\)
c, \(=6+\sqrt{15}-\sqrt{60}=6+\sqrt{15}-2\sqrt{15}=6-\sqrt{15}\)
Rút gọn
a) Ta có: \(\sqrt{98}-\sqrt{72}+\frac{1}{2}\sqrt{8}\)
\(=\sqrt{2}\left(\sqrt{49}-\sqrt{36}+\frac{1}{2}\sqrt{4}\right)\)
\(=\sqrt{2}\left(7-6+\frac{1}{2}\cdot2\right)\)
\(=\sqrt{2}\left(1+1\right)=2\sqrt{2}\)
b) Ta có: \(\sqrt{16a}+2\sqrt{40a}-3\sqrt{90a}\)
\(=\sqrt{a}\left(\sqrt{16}+2\sqrt{40}-3\sqrt{90}\right)\)
\(=\sqrt{a}\left(4+4\sqrt{10}-9\sqrt{10}\right)\)
\(=\sqrt{a}\left(4-5\sqrt{10}\right)\)
\(=4\sqrt{a}-5\sqrt{10a}\)
c) Ta có: \(\left(2\sqrt{3}+\sqrt{5}\right)\cdot\sqrt{3}-\sqrt{60}\)
\(=6+\sqrt{15}-\sqrt{60}\)
\(=6-\sqrt{15}\)
giải ra (sinx - \(\sqrt{3}\)cosx)(sinx - cosx)
nếu sinx - \(\sqrt{3}\)cosx = 0
=> sinx = \(\sqrt{3}\)cosx
=> x = 60o
nếu sinx - cosx = 0
=> sinx = cosx
=> x=45o
a) \(\sqrt{49.360}=\sqrt{7^2.6^2.10}=7.6\sqrt{10}=42\sqrt{10}\)
b)\(\sqrt{125a^2}=\sqrt{5^2.5.a^2}=5.\left|a\right|\sqrt{5}=-5a\sqrt{5}\) ( vì a<0)
c)\(-\sqrt{500.162}=-\sqrt{10^2.5.9^2.2}=-10.9\sqrt{5.2}=-90\sqrt{10}\)
d) \(\frac{1}{3}\sqrt{225a^2}=\frac{1}{3}\sqrt{15^2.a^2}=\frac{1}{3}.15.\left|a\right|=\frac{15a}{3}\) ( a>0)