Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀi 1
Để A \(\in\) Z
=>\(\left(n+2\right)⋮\left(n-5\right)\)
=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)
=>\(7⋮\left(n-5\right)\)
=>\(n-5\in\left\{1;7;-1;-7\right\}\)
=>\(n\in\left\{6;13;4;-2\right\}\)
Vậy \(n\in\left\{6;13;4;-2\right\}\)
a, n + 2 \(⋮n-3\)
<=> n - 3 + 5 \(⋮n-3\)
<=> 5 \(⋮n-3\)
=> n - 3 \(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
=> n = 4; 2; 8; -2 (thỏa mãn)
b, 3n + 15 \(⋮n-4\)
Có 3(n - 4) \(⋮n-4\)
=> (3n + 15) - (3n - 12) \(⋮n-4\)
<=> 27 \(⋮n-4\)
=> n - 4 \(\inƯ\left(27\right)=\left\{\pm1;\pm3;\pm9;\pm27\right\}\)
=> n = 5; 3; 7; 1; 13; -5; 31; -23 (thỏa mãn)
@hoang thuy an
c, 2n - 3 \(⋮3n+2\)
<=> 3(2n - 3) \(⋮3n+2\)
<=> 6n - 9 \(⋮3n+2\)
Có 2(3n + 2) \(⋮3n+2\)
=> (6n - 9) - (6n + 4) \(⋮3n+2\)
<=> -13 \(⋮3n+2\)
=> 3n + 2 \(\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
=> 3n = -1; -3; 11; -15
=> n = -\(\dfrac{1}{3};-1;\dfrac{11}{3};-5\)
Mà n \(\in Z\Rightarrow n=-1;-5\)
d, 4n + 7 \(⋮3n+1\)
<=> 3(4n + 7) \(⋮3n+1\)
<=> 12n + 21 \(⋮3n+1\)
Có 4(3n + 1) \(⋮3n+1\)
=> (12n + 21) - (12n + 4) \(⋮3n+1\)
<=> 17 \(⋮3n+1\)
=> 3n + 1 \(\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
=> 3n = 0; -2; 16; -18
=> n = 0; -\(\dfrac{2}{3};\dfrac{16}{3};-6\)
Mà n \(\in Z\Rightarrow n=0;-6\)
@hoang thuy an
- Vì n thuộc ước của 5 nên: \(n-1\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
- Ta có bảng giá trị:
\(n-1\) | \(-1\) | \(1\) | \(-3\) | \(3\) | \(-5\) | \(5\) | \(-15\) | \(15\) |
\(n\) | \(0\) | \(2\) | \(-2\) | \(4\) | \(-4\) | \(6\) | \(-14\) | \(16\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-14;-4;-2;0;2;4;6;16\right\}\)
a) -3 \(⋮\)3n+1
=> 3n+1 \(\in\)Ư(-3)
=> 3n+1 \(\in\){-1;1;3;-3}
Ta co bang:
3n+1 | -3 | -1 | 1 | 3 |
n | -4/3 | -2/3 | 0 | 2/3 |
loại | loại | chọn | loại |
KL
b) 8\(⋮\)2n+1
=> 2n+1\(\in\) Ư{8}
=>2n+1 \(\in\){-1;1;4;2;8;-2;-4;-8}
vì 2n là số chẵn => 2n+1 là số lẻ
=> 2n+1\(\in\){-1;1}
2n+1 | -1 | 1 |
n | -1 | 0 |
chọn | chọn |
c)n+1 \(⋮\)n-2
=> n-2 +3 \(⋮\)n-2
Vì n-2\(⋮\)n-2 mà n-2+3\(⋮\)n-2
=>3\(⋮\)n-2
=>n-2\(\in\) Ư{3}
=>n-2\(\in\){-1;-3;1;3}
n-2 | -1 | 1 | -3 | 3 |
n | 1 | 3 | -1 | 5 |
chọn | chọn | chọn | chọn |
d)3n+2 \(⋮\)n-1
=>3(n-1)+5 \(⋮\)n-1
Vì 3(n-1)\(⋮\)n-1 mà 3(n-1)+5\(⋮\)n-1
=>5\(⋮\)n-1
=>n-1\(\in\)Ư{5}
=>n-1\(\in\){-5;-1;1;5}
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
chọn | chọn | chọn | chọn |
e)3-n:2n+1
=> 2(3-n)\(⋮\)2n+1
=>6-2n\(⋮\)2n+1
=>7-(2n+1)\(⋮\)2n+1
Vì -(2n+1)\(⋮\)2n+1 mà 7 -(2n+1) \(⋮\)2n+1
=>2n+1 \(\in\)Ư{7}
=>2n+1\(\in\){-7;-1;1;7}
2n+1 | -7 | -1 | 1 | 7 |
n | -4 | -1 | 0 | 3 |
chọn | chọn | chọn | chọn |
a)\(n+7⋮n+2\)
\(\Rightarrow\left(n+2\right)+5⋮n+2\)
\(\Rightarrow5⋮n+2\)
\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
n+2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy \(n\in\left\{-1;-3;3;-7\right\}\)
b)\(9-n⋮n-3\)
\(\Rightarrow6-\left(n-3\right)\)
\(\Rightarrow6⋮n-3\)
\(\Rightarrow n-3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
nếu n-3=1 thì n=4
nếu n-3=-1 thì n=2
nếu n-3=2 thì n=5
nếu n-3=-2 thì n=1
nếu n-3=3 thì n=6
nếu n-3=-3 thì n=0
nếu n-3=6 thì n=9
nếu n-3=-6 thì n=-3
Vậy \(n\in\left\{4;2;5;1;6;0;9;-3\right\}\)
c)\(n^2+n+17⋮n+1\)
\(\Rightarrow n\left(n+1\right)+17⋮n+1\)
\(\Rightarrow17⋮n+1\)
\(\Rightarrow n+1\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
nếu n+1=1 thì n=0
nếu n+1=-1 thì n=-2
nếu n+1=17 thì n=16
nếu n+1=-17 thì n=-18
Vậy \(n\in\left\{0;-2;16;-18\right\}\)
a.Ta có: n2 +n + 1
=n.(n+1) +1
Vì n+1 chia hết cho n+1 => n.(n+1) chia hết cho n+1
Để n.(n+1)+1 chia hết cho n+1 => 1 chia hết cho n+1.
=> n+1 thuộc Ư(1)
Mà n thuộc N => n=1
Vậy n=1.
a) Ta có : \(n^2+n+1=n\left(n+1\right)+1\)
\(\Rightarrow n^2+n+1⋮n+1\Leftrightarrow1⋮n+1\) ( vì \(n\left(n+1\right)⋮n+1\))
\(\Leftrightarrow n+1\inƯ\left(1\right)=\left\{1\right\}\) ( vì \(n\inℕ\))
\(\Rightarrow n=1-1=0\)
Vậy \(n=0\)
Làm tương tự với các câu còn lại.