Trong không gian Oxyz, cho mặt phẳng
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2017

Chọn A

 

Cách 1: Ta có: B Oxy và B (α) nên B (a ; 2 – 2a ; 0).

 đi qua M (-1 ; -2 ; -3) và có một véctơ chỉ phương

 

Ta có: d (α) nên d Δ song song với nhau và cùng nằm trong mặt phẳng (α).

Gọi C  = d (Oxy) nên

Gọi d’ = (α) (Oxy), suy ra d’ thỏa hệ

Do đó, d’ qua  và có VTCP

Gọi φ = (Δ, d’) = (d, d’)

Gọi H là hình chiếu của C lên Δ. Ta có CH = 3

 

 

Cách 2: Ta có:  đi qua M (-1 ; -2 ; -3) và có một VTCP là

Ta có: B = Δ (Oxy), Δ (α) nên B (Oxy) (α) => B (a; 2 – a; 0)

Ta có: Δ  // d d (Δ, d) = 3 nên

1) Trong không gian Oxyz, cho các điểm M(2;1;4),N(5;0;0),P(1;-3;1). Gọi I(a,b,c) là tâm của mặt cầu tiếp xúc với mặt phẳng (Oyz) đồng thời đi qua các điểm M,N,P. Tìm c biết a+b+c<5 2) Trong không gian Oxyz, cho đường thẳng d :\(\frac{x+1}{2}\)= \(\frac{y}{1}\)=\(\frac{z-2}{-1}\) và 2 điểm A(-1;3;1), B(0;2;-1). Gọi C(m,n,p) là điểm thuộc d sao cho diện tích tam giác ABC bằng \(2\sqrt{2}\). Giá trị của tổng m+n+p bằng ?? 3) Trong...
Đọc tiếp

1) Trong không gian Oxyz, cho các điểm M(2;1;4),N(5;0;0),P(1;-3;1). Gọi I(a,b,c) là tâm của mặt cầu tiếp xúc với mặt phẳng (Oyz) đồng thời đi qua các điểm M,N,P. Tìm c biết a+b+c<5

2) Trong không gian Oxyz, cho đường thẳng d :\(\frac{x+1}{2}\)= \(\frac{y}{1}\)=\(\frac{z-2}{-1}\) và 2 điểm A(-1;3;1), B(0;2;-1). Gọi C(m,n,p) là điểm thuộc d sao cho diện tích tam giác ABC bằng \(2\sqrt{2}\). Giá trị của tổng m+n+p bằng ??

3) Trong không gian Oxyz, cho ba đường thẳng d :\(\frac{x}{1}\)=\(\frac{y}{1}\)=\(\frac{z+1}{-2}\); \(\Delta_1\): \(\frac{x-3}{2}\)=\(\frac{y}{1}\)=\(\frac{z-1}{1}\)\(\Delta_2\): \(\frac{x-1}{1}\)=\(\frac{y-2}{2}\)=\(\frac{z}{1}\). Đường thẳng \(\Delta\) vuông góc với d đồng thời cắt \(\Delta_1\), \(\Delta_2\) tương ứng tại H, K sao cho độ dài HK nhỏ nhất. Biết rằng \(\Delta\) có một vecto chỉ phương là \(\overrightarrow{u}\)=(h;k;1). Giá trị của h-k bằng

3
NV
6 tháng 5 2019

Câu 1:

\(\overrightarrow{MN}=\left(3;-1;-4\right)\Rightarrow\) pt mặt phẳng trung trực của MN:

\(3\left(x-\frac{7}{2}\right)-\left(y-\frac{1}{2}\right)-4\left(z-2\right)=0\Leftrightarrow3x-y-4z-2=0\)

\(\overrightarrow{PN}=\left(4;3;-1\right)\Rightarrow\) pt mp trung trực PN: \(4x+3y-z-7=0\)

\(\Rightarrow\) Phương trình đường thẳng giao tuyến của 2 mp trên: \(\left\{{}\begin{matrix}x=1+t\\y=1-t\\z=t\end{matrix}\right.\)

\(\Rightarrow I\left(1+c;1-c;c\right)\) \(\Rightarrow\overrightarrow{NI}=\left(c-4;1-c;c\right)\)

\(d\left(I;\left(Oyz\right)\right)=IN\Rightarrow\left|1+c\right|=\sqrt{\left(c-4\right)^2+\left(1-c\right)^2+c^2}\)

\(\Leftrightarrow\left(c+1\right)^2=3c^2-10c+17\)

\(\Leftrightarrow2c^2-12c+16=0\Rightarrow\left[{}\begin{matrix}c=4\\c=2\end{matrix}\right.\)

\(a+b+c< 5\Rightarrow\left(1+c\right)+\left(1-c\right)+c< 5\Rightarrow c< 3\Rightarrow c=2\)

NV
6 tháng 5 2019

Câu 2:

Phương trình tham số d: \(\left\{{}\begin{matrix}x=-1+2t\\y=t\\z=2-t\end{matrix}\right.\) \(\Rightarrow C\left(-1+2n;n;2-n\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(2n;n-3;1-n\right)\\\overrightarrow{AB}=\left(1;-1;-2\right)\end{matrix}\right.\) \(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(3n-7;-3n-1;3n-3\right)\)

\(\Rightarrow S_{ABC}=\frac{1}{2}\left|\left[\overrightarrow{AB};\overrightarrow{AC}\right]\right|=2\sqrt{2}\)

\(\Leftrightarrow\sqrt{\left(3n-7\right)^2+\left(-3n-1\right)^2+\left(3n-3\right)^2}=4\sqrt{2}\)

\(\Leftrightarrow27n^2-54n+27=0\Rightarrow n=1\)

\(\Rightarrow C\left(1;1;1\right)\Rightarrow m+n+p=3\)

8 tháng 4 2016


B C A D H K J S

Kẻ \(SH\perp AC\left(H\in AC\right)\)

Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)

\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)

\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)

\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)

Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)

Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)

Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)

\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)

Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)

1trong không gian oxyz, đường thẳng d đi qua điểm A(4;-2;2) và song song với đường thẳng\(\Delta\) \(\frac{x+2}{4}=\frac{y-5}{2}=\frac{z-2}{3}\) là 2 trong không gian hệ độ oxyz. tìm tọa độ hình chiếu vuông góc của M(1;1;1) trên mặt phẳng (P) 2x+2y-z+6 3 trong không gian oxyz, cho diểm a(-1;2;-3). tim tọa d965 điểm B đối xứng với điểm A qua mặt phẳng (oyz) 4trong không gian với hệ tọa độ oxyz cho mặt phẳng \(\alpha\)...
Đọc tiếp

1trong không gian oxyz, đường thẳng d đi qua điểm A(4;-2;2) và song song với đường thẳng\(\Delta\) \(\frac{x+2}{4}=\frac{y-5}{2}=\frac{z-2}{3}\)

2 trong không gian hệ độ oxyz. tìm tọa độ hình chiếu vuông góc của M(1;1;1) trên mặt phẳng (P) 2x+2y-z+6

3 trong không gian oxyz, cho diểm a(-1;2;-3). tim tọa d965 điểm B đối xứng với điểm A qua mặt phẳng (oyz)

4trong không gian với hệ tọa độ oxyz cho mặt phẳng \(\alpha\) :2x+2y-z+9=0 điểm A(1;2;-3). diểm đối xứng của a qua mặt phẳng \(\alpha\)

5 khẳng định nào sau đây là sai?

A\(\int\) \(f^,\)(x)dx=F(x)+C B \(\int\) k.f(x)dx=k.\(\int\) f(x)dx C \(\int\)f(x)dx=F(x)+C D\(\int\)[f(x)-g(x)]dx=\(\int\)f(x)dx-\(\int\)g(x)dx

6 gọi z1,z2,z3,z4 là bốn nghiệm của pt z^4-4z^3+7z^2-16z+12=0. tính z1^2+z2^2+z3^2+z4^2

7 trong khong gian oxyz, cho mặ phẳng (p):x+3y-z+9=0 và đương thẳng d có phương trình\(\frac{x-1}{2}=\frac{y}{2}=\frac{z+1}{-3}\) . tìm tọa độ giao điểm I của mp (P) va đường thẳng d

8 tính tích phân I=\(\int_{\frac{1}{e}}^e\) \(\frac{dx}{x}\)

9 trong không gian với hệ trục tọa độ oxyz, cho điểm A(1;-1-2) và đương thẳng d \(\frac{x-1}{1}=\frac{y+1}{1}=\frac{z}{2}\) . Phương trình mặt phẳng (P) qua điểm A và chứa đường thẳng d là

10 tính thể tích khối tròn xoay khi quay hình phẳng (D) :y=x^2-dx+4,y=0,x=0 qanh trục ox

11 cho F(x)=x^2 là một nguyên hàm của hàm số f(x)e^2x. tìm nguyên hàm của hàm số f phẩy(x)e^2x

12 diện tích hình phẳng giới hạn bởi các đồ thị ham số y=(e+1)x và y=(1+e^x) là

13 trong không gian với hệ tọa độ (oxyz) cho A(1;2;-3) hính chiếu vuông góc của điểm A trên trục ox là

14 trong không gian với hệ trưc tọa độ oxyz, cho mp(P):2x+y-2z-1=0 và đường thẳng d:\(\frac{x-2}{1}=\frac{y}{-2}=\frac{z+3}{3}\) . pt mp chứa d và vuông góc với(P) là

15 diện tích hình phẳng giới hạn bởi hai đường thẳng x+0,x=\(\pi\) và đô thị của hai hàm số y=cosx,y=sinx là

6
NV
12 tháng 5 2020

14.

Mặt phẳng (P) nhận \(\overrightarrow{n}=\left(2;1;-2\right)\) là 1 vtpt

Đường thẳng d nhận \(\overrightarrow{u}=\left(1;-2;3\right)\) là 1 vtcp

Điểm \(M\left(2;0;-3\right)\) thuộc d nên cũng thuộc (Q)

(Q) vuông góc (P) và chứa d nên nhận \(\left[\overrightarrow{n};\overrightarrow{u}\right]=\left(1;8;5\right)\) là 1 vtpt

Phương trình (Q):

\(1\left(x-2\right)+8y+5\left(z+3\right)=0\)

\(\Leftrightarrow x+8y+5z+13=0\)

15.

Phương trình hoành độ giao điểm:

\(sinx=cosx\Rightarrow x=\frac{\pi}{4}\)

\(S=\int\limits^{\frac{\pi}{4}}_0\left(cosx-sinx\right)dx+\int\limits^{\pi}_{\frac{\pi}{4}}\left(sinx-cosx\right)dx=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)

NV
12 tháng 5 2020

10.

Coi lại đề nào bạn, pt hình phẳng (D) có vấn đề, nhìn chữ -dx+4 kia ko biết phải nghĩ sao

11.

Cũng ko dịch được đề này, đoán đại: cho \(F\left(x\right)=x^2\) là 1 nguyên hàm của \(f\left(x\right).e^{2x}\). Tìm nguyên hàm của \(f'\left(x\right).e^{2x}\)

\(I=\int f'\left(x\right)e^{2x}dx\)

Đặt \(\left\{{}\begin{matrix}u=e^{2x}\\dv=f'\left(x\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2e^{2x}dx\\v=f\left(x\right)\end{matrix}\right.\)

\(\Rightarrow I=e^{2x}f\left(x\right)-2\int f\left(x\right)e^{2x}dx=e^{2x}f\left(x\right)-2x^2+C\)

12.

Đúng là \(y=\left(e+1\right)x\)\(y=1+e^x\) chứ bạn? Hai đồ thị này cắt nhau tại 2 điểm, nhưng ko thể tìm được tọa độ của điểm thứ 2 đâu

13.

Hình chiếu của A lên Ox có tọa độ \(\left(1;0;0\right)\)

26 tháng 5 2017

Hình giải tích trong không gian

NV
18 tháng 6 2019

Gọi pt mặt phẳng (Q) song song (P) có dạng \(x+2y-2z+d=0\)

Lấy \(A\left(-3;0;0\right)\) là một điểm thuộc (P)

\(d\left(A;\left(Q\right)\right)=\frac{\left|-3+d\right|}{\sqrt{1^2+2^2+2^2}}=\frac{\left|d-3\right|}{3}=2\Rightarrow\left[{}\begin{matrix}d=9\\d=-3\end{matrix}\right.\)

\(\Rightarrow\) Phương trình (Q): \(\left[{}\begin{matrix}x+2y-2z+9=0\\x+2y-2z-3=0\end{matrix}\right.\)

Bạn tìm giao điểm của d và (Q) sẽ ra tọa độ điểm M

Nhưng thi trắc nghiệm thì lẹ nhất là thay thẳng 4 đáp án vào kiểm tra

1 biết \(\int_3^7\) f(x)dx=4 . Tính E=\(\int_3^7\) [f(x)+1] 2 tính diện tích S của hình phẳng giới hạn bởi các đường y =\(\frac{2x-1}{-x+1}\) và hai trục tọa độ 3 phuog trình \(z^2+az+b=0,\left(a,b\in R\right)\) có một nghiệm là z=-2+i.Gía trị a - b bằng 4 trong không gian hệ tọa độ oxyz, phương trình mặt phẳng qua M (1;1;1) song song (oxy) là 5 trong không gian oxyz, cho mp (P) 2x+y-z-1=0 và (Q) x-2y+z-5=0 . Khi đó, giao...
Đọc tiếp

1 biết \(\int_3^7\) f(x)dx=4 . Tính E=\(\int_3^7\) [f(x)+1]

2 tính diện tích S của hình phẳng giới hạn bởi các đường y =\(\frac{2x-1}{-x+1}\) và hai trục tọa độ

3 phuog trình \(z^2+az+b=0,\left(a,b\in R\right)\) có một nghiệm là z=-2+i.Gía trị a - b bằng

4 trong không gian hệ tọa độ oxyz, phương trình mặt phẳng qua M (1;1;1) song song (oxy) là

5 trong không gian oxyz, cho mp (P) 2x+y-z-1=0 và (Q) x-2y+z-5=0 . Khi đó, giao tuyến của (P) và (Q) có một vecto chỉ phương là

A \(\overline{u}\) (1;-2;1) B \(\overline{u}\) (1;3;5) C \(\overline{u}\) (2;1-1) D \(\overline{u}\) (-1;3;-5)

6 trong ko gian oxyz cho điểm A(0;1;-2) .Tọa độ điểm H là hình chiếu vuông góc của điểm A trên mặt phẳng (P) :-x-2y+2z-3=0 là

7 trong ko gain oxyz cho điểm A(1;0;2).Tọa độ điểm H là hình chiều vuông góc của điểm A trên đường thẳng d :\(\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z+3}{3}\)

8 trong ko gian oxyz , mặt phẳng nào sau đây nhận vecto \(\overline{n}\) =(1;2;3) làm vecto pháp tuyến

A 2z-4z+6=0 B x+2y-3z-1=0 C x-2y+3z+1=0 D 2x+4y+6z+1=0

9 Trong ko gian oxyz , cho ba điểm A(2;1;-1),B(-1;0;4),C(0;-2;-1) .Phương trình nào sau đây là phương trình của mặt phẳng A và vuông góc BC

A :x-2y-5z+5=0 B x-2y-5z-5=0 C x-2y-5z=0 D 2x-y+5z-5=0

10 trong không gian oxyz , cho hai điểm A(4;1;0) ,B(2;-1;2).Trong các vecto sau , một vecto chỉ phương của đường thẳng AB là

A \(\overline{U}\) (3;0;-1) B \(\overline{u}\) (1;1;-1) C \(\overline{u}\) (2;2;0) D \(\overline{u}\) (6;0;2)

11 Trong ko gian oxyz, viết pt tham số của đường thẳng đi qua hai điểm A(1;2;-3) ,B(2;-3;1)

12 Trong ko gian oxyz, cho điểm A(-2;0;3) và mp (p) -2X+Y-Z+11=0.Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên mp (P)

13 trong ko gian vói hệ tọa độ oxyz, cho điểm A(1;0;2).TỌA độ điểm \(A^'\) (A phẩy) là điểm đối xúng của điểm A qua đường thẳng d :\(\frac{x-1}{2}=\frac{y+1}{-1}\frac{z+3}{3}\)

0
6 tháng 5 2020

à xl bạn ngheennn

\n\n

\n
NV
6 tháng 5 2020

Câu 28:

\(\overrightarrow{CB}=\left(1;-1;1\right)\)

Do (P) vuông góc BC nên nhận (1;-1;1) là 1 vtpt

Phương trình (P):

\(1\left(x-1\right)-1\left(y-1\right)+1\left(z+5\right)=0\)

\(\Leftrightarrow x-y+z+5=0\)

Câu 29:

Mạt phẳng (Q) nhận \(\left(1;-2;3\right)\) là 1 vtpt nên nhận các vecto có dạng \(\left(k;-2k;3k\right)\) cũng là các vtpt với \(k\ne0\)

Do đó đáp án B đúng (ko tồn tại k thỏa mãn)

Với đáp án A thì \(k=-2\) , đáp án C thì \(k=3\), đáp án D có \(k=1\)

23 tháng 5 2017

a) Gọi \(\overrightarrow{u}\left(1;-2;-1\right)\) là vectơ chỉ phương của d, giả sử \(\overrightarrow{v}\left(a;b;c\right)\)Ôn tập cuối năm môn hình học 12