K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2016

Ta có: \(i_1=3,5/7=0,5mm\)

\(i_2=7,2/8=0,9mm\)

Vân sáng: \(i=\dfrac{\lambda D}{a}\)

Suy ra: \(\dfrac{i_1}{i_2}=\dfrac{\lambda_1}{\lambda_2}\Rightarrow \lambda_2=\lambda_1.\dfrac{i_2}{i_1}=420.\dfrac{0,9}{0,5}=756nm\)

11 tháng 1 2016

     \(x_s= k\frac{\lambda D}{a}.\) 
     \(d_2-d_1 = \frac{x_sa}{D}= k\lambda\)

=>\(k= \frac{d_2-d_1}{\lambda}=\frac{1,5.10^{-6}}{\lambda}.(1)\)

Thay các giá trị của bước sóng \(\lambda\)1, \(\lambda\)2,\(\lambda\)3 vào biểu thức (1) làm sao mà ra số nguyên thì đó chính là vân sáng của bước sóng đó.

\(\frac{1,5.10^{-6}}{750.10^{-9}}=2.\)(chọn)
\(\frac{1,5.10^{-6}}{675.10^{-9}}=2,222.\)(loại)
\(\frac{1,5.10^{-6}}{600.10^{-9}}=2,5.\)(loại)
 
 

 

31 tháng 12 2014

 

x x s s 2 2 16 20 vân trung tâm x

\(N = N_1+N_2+N_2-(N_{12}+N_{13}+N_{23}) -N_{123}\)

Tìm \(N_1,N_2,N_3\)lần lượt là số vân sáng của các bức xạ 1,2,3 trong đoạn x

Số vân sáng của bức xạ 1 trong đoạn x thỏa mãn: \(x_{s2}^{16} \leq x_{1} \leq x_{s2}^{20}\)

=> \(16i_2 \leq k_1i_1 \leq 20i_2\)

=> \(16\frac{\lambda_2}{\lambda_1} \leq k_1 \leq 20\frac{\lambda_2}{\lambda_1}\) (do \(16\lambda_1 = 20\lambda_2 => \frac{\lambda_2}{\lambda_1} = \frac{4}{5}\))

=> \(12,8 \leq k_1 \leq 16 => k_1 = 13,..16.\). Có 4 vân sáng của bức xạ 1.

Làm tương tự:  \(16i_2 \leq k_3i_3 \leq 20i_2\) => \(20 \leq k_1 \leq 25 => k_1 = 20,..25.\) Có 6 vân sáng của bức xạ 3.

Trong đoạn x có chứa 5 vân sáng bức xạ 2 vì ((\(k_2 = 16,..20\))

Tìm số vân sáng trùng nhau của bức xạ 1 và bức xạ 2.

\(x_{s2} = x_{s1} => \frac{\lambda_2}{\lambda_1} = \frac{k_1}{k_2} = \frac{4}{5}.\)

Ta có bảng sau: 

k21617181920
k1loại (\(\notin Z\))loại (\(\notin Z\))loại (\(\notin Z\))loại (\(\notin Z\))16

Như vậy có 1 vân sáng trùng nhau của bức xạ 1 và 2. (\((k_1 ,k_2) = (16,20) \)

Làm tương tự có 1 vân sáng trùng nhau của bức xạ 2 và 3 là \((k_2 ,k_3) = (20,25) \)

                          1 vân sáng trùng nhau của bức xạ 1 và 3 là \((k_1 ,k_3) = (16,25) \)

Dựa vào các cặp trùng nhau thấy có 1 vị trí trùng nhau của cả 3 bức xạ là \((k_1,k_2 ,k_3) = (16,20,25) \)

Tóm lại, số vân sáng quan sát được trong đoạn x là

\(N = 4+5+6 -(1+1+1)-1 = 11.\)

Chọn đáp án C.11

 

27 tháng 1 2015

o 1,2 1,2,3 x T

Khoảng cách giữa 2 vân gần nhất có màu giống vân trung tâm là \(x_{\equiv}\)

\(\Rightarrow x_{\equiv}=k_1i_1=k_2i_2=k_3i_3\)\(\Rightarrow k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)(1)

Ta có: \(\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{5}{4}\)

Vì trong khoảng giữa hai vân sáng gần nhau nhất cùng màu với vân trung tâm chỉ có một vị trí trùng nhau của   các vân sáng ứng với hai bức xạ   λ1, λ2 nên: \(\begin{cases}k_1=5.2=10\\k_2=4.2=8\end{cases}\)

Thay vào (1) ta có: \(10\lambda_1=8\lambda_2=k_3\lambda_3\)

λcó màu đỏ nên λλ2

\(\Rightarrow k_3<8\)

\(\Rightarrow k_3=7;5;3\)

\(k_3=7\Rightarrow\lambda_3=\frac{8}{7}\lambda_2=\frac{8}{7}.0,5=0,57\)

\(k_3=5\Rightarrow\lambda_3=\frac{8}{5}\lambda_2=\frac{8}{5}.0,5=0,8\)loại, vì ngoài bức xạ màu đỏ.

Vậy \(\lambda_3=0,57\mu m\), không có đáp án nào thỏa mãn :))

28 tháng 1 2015

Ý này của bạn bị nhầm λcó màu đỏ nên λλ   

Sửa lại là: Vì \(\lambda_3\) có màu đỏ nên \(\lambda_3>\lambda_2\)

29 tháng 1 2015

Khoảng cách giữa 2 vân sáng gần nhau nhất cùng màu với vân trung tâm: \(x_T=k_1i_1=k_2i_2\)(1)

\(\Rightarrow k_1\lambda_1=k_2\lambda_2\Rightarrow\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{0,6}{0,48}=\frac{5}{4}\)

\(\Rightarrow\begin{cases}k_1=5\\k_2=4\end{cases}\)

Thay vào (1) \(x_T=5i_1=4i_2\)

Như vậy tại vị trí 2 vân trùng nhau kể từ vân trung tâm có vân bậc 5 của \(\lambda_1\) và bậc 4 của \(\lambda_2\)

Do đó, giữa 2 vân sáng cùng màu vân trung tâm có: 4 vân sáng λ1 và 3 vân sáng λ­2.     

Đáp án A.

10 tháng 6 2016

Vị trí vân trùng nhau: 

\(x_T=k_1i_1=k_2i_2\Rightarrow k_1.\lambda_1=k_2.\lambda_2\)

\(\Rightarrow \dfrac{k_1}{k_2}=\dfrac{\lambda_2}{\lambda_1}=\dfrac{3}{2}\)

Lấy \(k_1=3\)

Do đó tại vị trí trùng nhau là vân sáng bậc 3 của bức xạ \(\lambda_1\)

29 tháng 1 2015

\(i_1 = \frac{\lambda_1D_1}{a}\)

\(i_2 = \frac{\lambda_2D_2}{a}\)

=> \(\frac{i_1}{i_2} = \frac{\lambda_1D_1}{\lambda_2D_2} \)

=> \(\frac{\lambda_1}{\lambda_2} = \frac{i_1D_2}{i_2D_1} = \frac{1.2}{3.1}= \frac{2}{3}\) (do \(i_2 = 3i_1; D_2 = 2D_1\))

=> \(\lambda_2 = \frac{3\lambda_1}{2} = \frac{3.0,4}{2} = 0,6 \mu m.\)

Chọn đáp án.A

4 tháng 6 2016

 + Ban đầu M là vân tối thứ 3 nên: \(x_M=\left(2+\frac{1}{2}\right)\frac{\lambda D}{a}\left(1\right)\)
+ Khi giãm S1S2 một lượng \(\Delta\)a thì M là vân sáng bậc n nên: \(x_M=n\frac{\lambda D}{a-\Delta a}\left(2\right)\)
+ Khi tăng S1S2 một lượng \(\Delta\)a thì M là vân sáng bậc 3n nên: \(x_M=3n\frac{\lambda D}{a+\Delta a}\left(3\right)\)
+ (2) và (3) \(\Rightarrow k\frac{\lambda D}{a-\Delta a}=3k\frac{\lambda d}{a+\Delta a}\Rightarrow\Delta a=\frac{a}{2}\)
+ Khi tăng S1S2 một lượng 2\(\Delta\)a thì M là sáng bậc k nên: \(x_M=k\frac{\lambda D}{a+2\Delta a}=2,5\frac{\lambda D}{a}\left(4\right)\)
+ Từ (1) và (4) \(\Rightarrow\) k = 5. Vậy tại M lúc này là vân sáng bậc 5.

27 tháng 11 2016

Khoảng cách giữa 2 vân sáng liên tiếp có màu giống màu vân chính giữa là: \(x_T\)

\(\Rightarrow x_T=k_1.i_1=k_2.i_2\)

\(\Rightarrow k_1.\lambda_1=k_2.\lambda_2\)

\(\Rightarrow\dfrac{k_1}{k_2}=\dfrac{\lambda_2}{\lambda_1}=\dfrac{4}{3}\)

\(\Rightarrow k_1=4;k_2=3\)

\(\Rightarrow 2,56=4.i_1=3.i_2\)

\(\Rightarrow i_1=0,64mm\); \(i_2=0,85mm\)

\(\Rightarrow \lambda_2=\dfrac{1,5.0,85}{2}=0,64\mu m\)