K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

Phương pháp

Áp dụng công thức tính tần số góc trong mạch dao động ω = 1 L C

Cách giải 

Áp dụng công thức tần số góc trong mạch dao động LC ta có

Đáp án C

19 tháng 5 2016

Mạch LC có i vuông qua với q nên:

\((\dfrac{i}{I_0})^2+(\dfrac{q}{Q_0})^2=1\)\(\Rightarrow (\dfrac{i}{\omega Q_0})^2+(\dfrac{q}{Q_0})^2=1\)

\(\Rightarrow (\dfrac{i_1}{\omega Q_0})^2+(\dfrac{q_1}{Q_0})^2=1\)

\((\dfrac{i_2}{\omega Q_0})^2+(\dfrac{q_2}{Q_0})^2=1\)

\(\Rightarrow (\dfrac{i_1}{\omega })^2+(q_1)^2=(\dfrac{i_2}{\omega })^2+(q_2)^2\)

\(\Rightarrow \omega ^2=\dfrac{i_1^2-i_2^2}{q_2^2-q_1^2}\)

\(\Rightarrow T=\dfrac{2\pi}{\omega}=2\pi.\sqrt{\dfrac{q_2^2-q_1^2}{i_1^2-i_2^2}}\)

\(\Rightarrow \lambda = c.T =2\pi c.\sqrt{\dfrac{q_2^2-q_1^2}{i_1^2-i_2^2}}\)

Chọn B.

20 tháng 5 2016

Bài này chỉ cần sử dụng công thức 2 giá trị của C để có cùng 1 giá trị của $U_C$ :

$U_C=U_{C_{max}} \cos \left(\dfrac{\varphi _1-\varphi _2}{2} \right)$

$\Rightarrow U_{C_{max}}=\dfrac{60}{\cos \dfrac{\pi }{6}}=40\sqrt{3} V$

Khi $U_{C_{max}}$ ta có:

$P=\dfrac{U^2}{R}\cos ^2\varphi _3=P_{max}\cos ^2\varphi _3=\dfrac{P_{max}}{2}$

$\Rightarrow \cos \varphi _3=\dfrac{\sqrt{2}}{2}$

Vẽ giản đồ suy ra: $U=\dfrac{U_{C_{max}}}{\sqrt{2}}=20\sqrt{6}\left(V \right)$

1 tháng 6 2016

Khi C = C1 hoặc C = C2 thì I như nhau, do vậy:

\(Z_1=Z_2\Rightarrow Z_L-Z_{C1}=Z_{C2}-Z_L\Rightarrow Z_L=\dfrac{Z_{C1}+Z_{C2}}{2}=45\Omega\)

Để cường độ hiệu dụng qua R cực đại thì mạch xảy ra cộng hưởng.

\(\Rightarrow Z_C=Z_L=45\Omega\)

Chọn A.

31 tháng 5 2016

\(Z_{L1}=\omega_1.L=30\) (1)

\(Z_{C1}=\dfrac{1}{\omega_1C}=40\) (2)

Lấy (1) chia (2) vế với vế ta được: \(\omega_1^2LC=\dfrac{3}{4}\) (3)

Khi tần số \(\omega_2\) thì hệ số công suất bằng 1

\(\Rightarrow Z_{L2}=Z_{C2}\Rightarrow \omega_2.L=\dfrac{1}{\omega_2C}\)

\(\Rightarrow \omega_{2}^2LC=1\) (4)

Lấy (4) chia (3) vế với vế \(\Rightarrow \dfrac{\omega_2}{\omega_1}=\dfrac{2}{\sqrt 3}\Rightarrow \omega_2=\dfrac{2}{\sqrt 3}\omega_1\)

Chọn B.

19 tháng 11 2015

Trong mạch dao động thì i sớm pha hơn q là \(\frac{\pi}{2}.\)

26 tháng 5 2016

Do E và B biến thiên cùng pha nên, khi cảm ứng từ có độ lớn B0/2 thì điện trường E cũng có độ lớn E0/2.

Bài toán trở thành tính thời gian ngắn nhất để cường độ điện trường có độ lớn E0/2 đang tăng đến độ lớn E0/2.

E M N Eo Eo/2

Từ giản đồ véc tơ quay ta dễ dang tính được thời gian đó là t = T/3

Suy ra: \(t=\dfrac{5}{3}.10^{-7}\)s

17 tháng 3 2016

Điện áp ko đổi nhưng vẫn có dòng điện và dòng điện hữu hạn, chứng tỏ chỉ có 2 trường hợp:
1. Điện trở và cuộn cảm mắc nối tiếp (nối tiếp với tụ thì sẽ ko thể có dòng chạy qua)
2. Điện trở song song với tụ điện (nếu song song với cuộn cảm thuần thì sẽ bị chập mạch, tức là dòng lớn vô cùng)
Có thể bỏ qua trường hợp này vì điều kiện thứ 2.

Xét trường hợp 1:

Dễ dàng tính được: \(R=\frac{30}{2.5}=12\Omega\)

Mắc nối tiếp hộp kín với tụ điện C, ta có mạch RLC nối tiếp.

Theo bài ra, ta có hình vẽ:

Từ hình vẽ ta có:
\(U_R=U_L\tan30^o\)
Suy ra:
\(Z_L=\frac{R}{\tan30^o}=12\sqrt{3}\Omega\)

Tổng trở của hộp kín:

\(Z=\sqrt{R^2+Z^2_L}=24\Omega\)
 

15 tháng 6 2016

Bài này tìm gì vậy bạn?

15 tháng 6 2016

tìm hệ số công suất cuộn dây đó bạn