Trong một buổi giao lưu, có 5 học sinh trường X và 5 học sinh trường Y ngồi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2018

Đánh số 10 vị trí ngồi từ 1 đến 10 trong đó 1 đến 5 là hàng 1 thuộc bàn 1, còn 6 đến 10 là hàng 2 thuộc bàn 2.

Giả sử 1 học sinh trường X ngồi vị trí số 1, thì các học sinh còn lại của trường X chỉ ngồi ở vị trí số lẻ, còn 5 học sinh của trường Y chỉ ngồi vị trí số chẵn.

Số cách xếp lúc này là: 5!.5!. Tương tự với trường hợp học sinh trường X ngồi vị trí số chẵn.

vậy số cách xếp cần tìm: 2.5!.5! = 28800.

Chọn D.

31 tháng 7 2020

Bạn bị ngược rồi, B có 3 người còn A có 4 người mà. Không sao vẫn tính là bạn đang sắp xếp A nhé, mình kí hiệu 4 học sinh A là A1 A2 A3 A4 thì ở chỗ xếp học sinh A ấy bạn mới chỉ xếp cho A1, A2, A3 hoặc A4 mà thôi nên phải nhân 4 nữa. Đáp án phải là D

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

D.Công Thiện: Uh mình nhìn nhầm. Nhưng đáp án không thay đổi bạn ơi. Chỉ cần thay B bằng A thôi mà.

NV
9 tháng 1 2022

Xếp 6 học sinh trường A vào 1 dãy ghế: 6! cách

Xếp 6 học sinh trường B vào dãy còn lại: 6! cách

Lúc này hai học sinh đối diện luôn khác trường, có 6 cặp như vậy, mỗi cặp có 2 cách hoán vị nên có \(2^6\) cách hoán vị 

Tổng cộng: \(6!.6!.2^6\) cách xếp thỏa mãn

 

5 tháng 10 2021

a) Có 2 cách xếp.

    Bạn A có 6! cách.

    Bạn B có 6! cách.

    Đổi vị trí A,B có tất cả 2*(6!)2 cách xếp chỗ.

b) Chọn 1 học sinh A vào vị trí bất kì: 12 cách.

    Chọn 1 học sinh B đối diện A có 6 cách.

    Cứ chọn liên tục như vậy ta được:

     \(\left(12\cdot6\right)\cdot\left(10\cdot5\right)\cdot\left(8\cdot4\right)\cdot\left(6\cdot3\right)\cdot\left(4\cdot2\right)\cdot\left(2\cdot1\right)=2^6\cdot\left(6!\right)^2\)

   cách xếp chỗ để hai bạn ngồi đối diện thì kkhasc trường         nhau.

9 tháng 10 2022

Ở ý a) tại sao bạn A lại có $6!$ cách v ạ?

bạn B cx thế ạ?

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:  a. Họ ngồi chỗ nào cũng được?  b. Nam ngồi kề nhau, nữ ngồi kề nhau?  c. Nam và nữ ngồi xen kẻ nhau?  d. Có 2 người luôn ngồi cạch nhau?Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách: a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa b. Vào 5 ghế chung quanh...
Đọc tiếp

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:

  a. Họ ngồi chỗ nào cũng được?
  b. Nam ngồi kề nhau, nữ ngồi kề nhau?
  c. Nam và nữ ngồi xen kẻ nhau?
  d. Có 2 người luôn ngồi cạch nhau?
Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách:
 a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa
 b. Vào 5 ghế chung quanh một bàn tròm, nếu không có sự phân biệt giữa các ghế này 
Câu 3: Có bao nhiêu cách sắp xếp chỗ ngồi 6 người ngồi vào một dãy 6 ghế hàng ngang nếu:
a. Có 3 người trong số đó muốn ngồi kề nhau
b. Có 2 người trong số đó không muốn ngồi kề nhau
Câu 4: Từ 5 bông vang, 3 bông trắng và 4 bông đỏ( các bông hoa xem như đôi một khác nhau ), ta chọn ra một bó gồm 7 bông:
a. Có bao nhiêu cách chọn ra bó hoa trong đó có đúng một bông đỏ
b. Có bao nhiêu cách chọn ra bó hoa trong đó có ít nhất 3 bông đỏ
c. Có bao nhiêu cách chọn ra bó hoa trong đó có mỗi màu có ít nhất 2 bông

0
13 tháng 12 2019

Chọn C

1fgkCyexFQWd.png

Ta có số phần tử không gian mẫu: Ω = 10!.

+) Có 10 cách chọn học sinh cho vị trí số 1. Với mỗi cách chọn vị trí số 1 có 5 cách chọn học sinh cho vị trí số 10 ( Nếu vị trí số 1 là học sinh X thì có 5 cách chọn học sinh ở vị trí 10 là học sinh Y và ngược lại).

+) Có 8 cách chọn học sinh cho vị trí số 2 ( Loại 2 học sinh ở vị trí 10) . Với mỗi cách chọn vị trí số 2 có 4 cách chọn học sinh cho vị trí số 9( Nếu vị trí số 2 là X thì có 4 cách chọn vị trí số 9 là Y, chỉ còn 4 do đã loại 1 em ở lần chọn trước).

+) Hoàn toàn tương tự cho đến hết ta được số phần tử của biến cố cần tính xác suất là: 

10 tháng 2 2021

xin fb chj ;-;