Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.1
a) Áp dụng định lý Bezout:
\(P\left(x\right)⋮2x+3\)
\(\Rightarrow P\left(\frac{-3}{2}\right)=0\)
hay \(6.\frac{-27}{8}-7.\frac{9}{4}-16.\frac{-3}{2}+m=0\)
\(\Leftrightarrow\frac{-81}{4}-\frac{63}{4}+24+m=0\)
\(\Rightarrow m=12\)
Vậy m = 12
\(1.x^2-4x+4=8\left(x-2\right)^5\)
\(\Leftrightarrow\left(x-2\right)^2-8\left(x-2\right)^5=0\)
\(\Leftrightarrow\left(x-2\right)^2\left[1-8\left(x-2\right)^3\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)^2=0\\1-8\left(x-2\right)^3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\\left(x-2\right)^3=\frac{1}{8}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{5}{2}\end{cases}}}\)
\(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)
\(=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)
\(=4\left(a^2-ab+b^2\right)-6a^2-6b^2\)(Vì a+b=1)
\(=4a^2-4ab+3b^2-6a^2-6b^2\)
\(=-2a^2-4ab-2b^2\)
\(=-2\left(a+b\right)^2=-2\)
Bài 3: (SBT/24):
a. \(\dfrac{5x+3}{x-2}\)=\(\dfrac{5x^2+13x+6}{x^2-4}\)
(5x+3) . (x2-4) = 5x3-20x+3x3-12
(x-2) . (5x2+13x+6) = 5x3+13x2+6x-10x2-26x-12 = 5x3-20x+3x2-12
=> (5x+3) (x2-4) = (x-2) (5x2+13x+6)
Vậy \(\dfrac{5x+3}{x-2}\)=\(\dfrac{5x^2+13x+6}{x^2-4}\)(đẳng thức đúng)
b. \(\dfrac{x+1}{x+3}\)=\(\dfrac{x^2+3}{x^2+6x+9}\)
(x+1) . (x2+6x+9) = x3+6x2+9x+x2+6x+9 = x3+7x2+15x+9
(x+3) . (x2+3) = x3+3x+3x2+9
=> (x+1) (x2+6x+9) ≠ (x+3) (x2+3)
Vậy \(\dfrac{x+1}{x+3}\)≠\(\dfrac{x^2+3}{x^2+6x+9}\)(đẳng thức sai)
Chữa lại: \(\dfrac{x+1}{x+3}\)=\(\dfrac{x^2+3}{x^{2_{ }}+6x+9}\)
c. \(\dfrac{x^2-2}{x^2-1}\)=\(\dfrac{x+2}{x+1}\)
(x2-2) . (x+1) = x3+x2-2x-2
(x2-1) . (x+2) = x3+2x2-x-2
=> (x2-2) (x+1) ≠ (x2-1) (x+2)
Vậy \(\dfrac{x^2-2}{x^2-1}\)≠\(\dfrac{x+2}{x+1}\)(đẳng thức sai)
Chữa lại: \(\dfrac{x^2+x-2}{x^2-1}\)=\(\dfrac{x+2}{x+1}\)
d. \(\dfrac{2x^2-5x+3}{x^2+3x-4}\)=\(\dfrac{2x^2-x-3}{x^2+5x+4}\)
(2x2-5x+3) . (x2+5x+4) = 2x4+10x3+8x2-5x3-25x2-20x+3x2+15x+12
= 2x4+5x3-14x2-5x+12
(x2+3x-4) . (2x2-x-3) = 2x4-x3-3x2+6x3-3x2-9x-8x2+4x+12
= 2x4+5x3-14x2-5x+12
=> (2x2-5x+3) (x2+5x+4) = (x2+3x-4) (2x2-x-3)
Vậy \(\dfrac{2x^2-5x+3}{x^2+3x-4}\)=\(\dfrac{2x^2-x-3}{x^2+5x+4}\)
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
c) Cách 1:
x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)
a) Kết quả M = (x + l)(2x - 3);
b) Kết quả M = (2x - 1)(x - 2).