K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

Cách 1:

n ( Ω ) = 10 !

Bước 1: Xếp 5 bạn nữ có: 5! Cách

Bước 2: Xếp 5 bạn nam vào xen giữa 4 khoảng trống của 5 bạn nữ và hai vị trí đầu hàng. Có hai trường hợp sau

+) TH1: Xếp 4 bạn nam vào 4 khoảng trống giữa 5 bạn nữ, bạn nam còn lại có hai lựa chọn:

Xếp vào hai vị trí đầu hàng. Trường hợp này có A 5 4 . 2  cách

+) TH2:

- Chọn một khoảng trống trong 4 khoảng trống giữa hai bạn nữ để xếp hai bạn nam có C 4 1  cách

- Chọn hai bạn nam trong 5 bạn nam để xếp vào vị trí đó có A 5 2  cách

- Ba khoảng trống còn lại xếp còn lại ba bạn nam còn lại có 3! Cách

Trường hợp này có C 4 1 . A 5 2 . 3 !  cách

Vậy có tất cả 5 ! ( A 5 4 . 2 + C 4 1 . A 5 2 . 3 ! )  cách

Vậy xác suất là:  P = 5 ! ( A 5 4 . 2 + C 4 1 . A 5 2 . 3 ! ) 10 ! = 1 42

Cách 2:

n ( Ω ) = 10 !

- Xếp 5 bạn nam có 5! Cách

- Xếp 5 bạn nữ xen vào giữa 4 khoảng trống và 2 vị trí đầu hàng có A 6 5  cách

Vậy 5 ! . A 6 5  cách

Vậy P = 5 ! . A 6 5 10 ! = 1 42

Chọn đáp án B.

 

18 tháng 12 2018

Đáp án B

 

30 tháng 5 2019

HD: Xếp 10 học sinh thành 1 hàng ngang có:

Gọi A là biến cố: “Hàng ngang không có 2 bạn nữ nào đứng cạnh nhau”

Sắp xếp 5 bạn nam thành 1 hàng có: 5! cách sắp xếp, khi đó có 6 vị trị để xếp 5 bạn nữ xen kẽ để không có hai bạn nữ đứng cạnh nhau (6 vị trí bao gồm 2 vị trí đầu và cuối và 4 vị trí giữa 2 bạn nam)

31 tháng 5 2018

Số phần tử của không gian mẫu n(Ω)=10!

Xếp 10 học sinh trên một hàng ngang sao cho 5 học sinh nam xen kẽ 5 học sinh nữ có 2 cách xếp.

Xét trong 2 cách xếp trên các khả năng Hoàng và Lan đứng liền kề nhau:

Xếp 8 học sinh trên một hàng ngang sao cho 4 học sinh nam xen kẽ 4 học sinh nữ có 2 cách xếp.

Với mỗi cách xếp 8 học sinh trên có 9 khoảng trống tạo ra. Với mỗi khoảng trống trên, xếp Hoàng và Lan vào khoảng trống này để được 5 học sinh nam xen kẽ 5 học sinh nữ có 1 cách xếp.

Suy số cách xếp 5 học sinh nam xen kẽ 5 học sinh nữ mà Hoàng và Lan đứng kề nhau là: 2.9

Vậy số phần tử của A là: n =2–2.9=18432.

Xác suất cần tìm là P(A)=n(A)/n(Ω)=18432/10!=8/1575.

+ Phương án B. Tính sai: P(A)=(2.5!5!-2.4!4!7)/10!=1/175.

+ Phương án C. Tính sai: P(A)=(5!5!-4!4!9)/10!=4/1575.

+ Phương án D. Tính sai: P(A)=(2.5!5!- 2.4!4!18)/10!=1/450.

Đáp án B

4 tháng 1 2017

Đáp án B

Phương pháp: Công thức tính xác suất của biến cố A là: P A = n A n Ω

Cách gii:

Chọn 3 đoàn viên trong 25 đoàn viên nên  n Ω = C 25 3 = 2300.

Gọi biến cố A: “Chọn 3 đoàn viên trong đó có 2 nam và 1 nữ”.

Khi đó ta có: n A = C 25 1 . C 10 2 = 675.  Vậy xác suất cần tìm là:  P A = n A n Ω = 675 2300 = 27 92 .

1 tháng 12 2019

Đáp án B


Số cách xếp 10 học sinh vào 10 ghế là: 10!

4 bạn nữ chỉ có thể xếp vào các vị trí N1,N2,N3,N4

Nếu Huyền ở vị trí N1 thì có 3! cách xếp 3 bạn nữ còn lại, Quang có 5 cách chọn chỗ ngồi và có 5! cách xếp 5 bạn nam còn lại. Vậy có 3!.5.5! = 3600 cách xếp

Tương tự nếu Huyền ở vị trí N4 cũng có 3600 cách xếp

Nếu Huyền ở vị trí N2 thì có 3! cách xếp 3 bạn nữ còn lại, Quang có 4 cách chọn chỗ ngồi và có 5! cách xếp 5 bạn nam còn lại. Vậy có 3!.4.5! = 2880 cách xếp

Tương tự nếu Huyền ở vị trí N3 cũng có 2880 cách xếp

Vậy có 2(3600 + 2880) = 12960 cách xếp thỏa mãn đề bài

⇒ p = 12960 10 ! = 1 280

18 tháng 8 2017

Số cách xếp 10 học sinh vào 10 ghế là: 10!

4 bạn nữ chỉ có thể xếp vào các vị trí N1,N2,N3,N4

Nếu Huyền ở vị trí N1 thì có 3! cách xếp 3 bạn nữ còn lại, Quang có 5 cách chọn chỗ ngồi và có 5! cách xếp 5 bạn nam còn lại. Vậy có 3!.4.5! = 2880 cách xếp

Tương tự nếu Huyền ở vị trí N4 cũng có 3600 cách xếp

Nếu Huyền ở vị trí N2 thì có  cách xếp 3 bạn nữ còn lại, Quang có 4 cách chọn chỗ ngồi và có  cách xếp 5 bạn nam còn lại. Vậy có 2(3600 + 2880)= 12960 cách xếp

Tương tự nếu Huyền ở vị trí N3 cũng có 2880 cách xếp

 

Vậy có  cách xếp thỏa mãn đề bài

⇒ p = 12960 10 ! = 1 280

20 tháng 9 2017

9 tháng 10 2018

Đáp án C

Số cách xếp ngẫu nhiên là 10!.

Ta tìm số cách xếp thoả mãn:

Đánh số hàng từ 1 đến 10. Có hai khả năng:

5 nam xếp vị trí lẻ và 5 nữ xếp vị trí chẵn có 5! x 5! =  120 2 .

5 nam xếp vị trí chẵn và 5 nữ xếp vị trí lẻ có 5! x 5! =  120 2 .

Theo quy tắc cộng có 120 2 + 120 2 = 2 × 120 2  cách xếp thoả mãn.

Vậy xác suất cần tính  2 5 ! 2 10 ! = 1 126 .

12 tháng 1 2018

Đáp án đúng : C