K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

d : { x = 1 - t y = 2 + 2 t z = 3 + t có 1 véc tơ chỉ phương là u → - 1 ; 2 ; 1  và  P :   x - y + 3 = 0  có véc tơ pháp tuyến là n → 1 , - 1 , 0  

Khi đó : góc giữa đường thẳng d  và mặt phẳng (P) là:

 

Chọn A.

AH
Akai Haruma
Giáo viên
15 tháng 1 2017

Lời giải:

a) Gọi phương trình đường thẳng có dạng $y=ax+b$ $(d)$

\(B,C\in (d)\Rightarrow \left\{\begin{matrix} 3=2a+b\\ -3=-4a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=1\\ b=1\end{matrix}\right.\Rightarrow y=x+1\)

Vậy PT đường thẳng chứa cạnh $BC$ có dạng $y=x+1$

b) Tương tự, ta lập được phương trình đường thẳng chứa cạnh $AC$ là \((d_1):y=\frac{2x}{5}-\frac{7}{5}\).

Gọi PT đường cao đi qua $B$ của tam giác $ABC$ là \((d'):y=ax+b\)

\((d')\perp (d_1)\Rightarrow \frac{2}{5}a=-1\Rightarrow a=\frac{-5}{2}\).

Mặt khác \(B\in (d')\Rightarrow 3=\frac{-5}{2}.2+b\Rightarrow b=8\)

\(\Rightarrow (d'):y=\frac{-5x}{2}+8\)

c) Gọi điểm thỏa mãn ĐKĐB là $M(a,b)$

Ta có: \(M\in (\Delta)\Rightarrow 2a+b-3=0\) $(1)$

$M$ cách đều $A,B$ \(\Rightarrow MA^2=MB^2\Rightarrow (a-1)^2+(b+1)^2=(a-2)^2+(b-3)^2\)

\(\Leftrightarrow 2-2a+2b=13-4a-6b\)

\(\Leftrightarrow 11-2a-8b=0(2)\)

Từ \((1);(2)\Rightarrow \left\{\begin{matrix} a=\frac{13}{14}\\ b=\frac{8}{7}\end{matrix}\right.\Rightarrow M\left ( \frac{13}{14};\frac{8}{7} \right )\)

15 tháng 1 2017

con nếu đề bài cho 1 điểm và phương trình đường thẳng của tam giác muốn tìm phương trình đường cao còn lại vầ các cạnh thj làm thế nào

28 tháng 2 2019

a) Ta có: góc FAB + góc BAC = 90 độ
góc EAC + góc BAC = 90 độ
=> Góc FAB = góc EAC
AF=AC; AB=AE
=> Tam giác AFB = tam giác ACE
=> FB=EC

b) Lấy K sao cho M là trung điểm của AK thì ta có ACKB là hình bình hành nên góc ACB =180* - góc BAC. Ta cũng tính dc góc FAE= 180* - góc BAC ( tổng của BAC với 2 lần góc CAE, mà góc CAE=90* -góc BAC). Thêm với AC=AF , CK=AE (=AB) nên tam giác ACK = tam giác FAE nên AK=EF mà AK=2AM nên EF=2AM

c) Gọi H là giao của AM và EF. Tam giác ACK = tam giác FAE nên góc CAK = góc AFE, mà góc CAK phụ với góc MAF nên góc AFE cũng phụ góc MAF. Xét trong tam giác AHF có góc F và góc A phụ nhau nên tam giác AHF vuông tại H suy ra AM vuông góc với EF.

27 tháng 4 2016

Ta có Pt d2 :x+2y-5=0

vì M ϵ d1 :x-y-1=0 nên M(m,m-1)

MA2 = (-1-m)2 + (2-m+1)2 = 1+2m+m2 +9-6m+m2 =2m-4m+10

<=> MA=\(\sqrt{2m^2-4m+10}\)

d(m,d)= \(\frac{\left|m+2m-2-5\right|}{\sqrt{1^2+2^2}}\)  =\(\frac{\left|3m-7\right|}{\sqrt{5}}\)

theo bài ra thì MA=d(M,d2)

=>\(\frac{\left|3m-7\right|}{\sqrt{5}}\)=\(\sqrt{2m^2-4m+10}\)      <=>|3m-7|=\(\sqrt{5}\)\(\sqrt{2m^2-4m+10}\)

<=>9m2 -42m +49=5(2m2-4m+10)

<=>9m-42m +49=10m2 -20m +50

<=>m2 +22m +1=0

<=>m= -11+2\(\sqrt{30}\) hoặc m=-11-2\(\sqrt{30}\)

=> M(-11+2\(\sqrt{30}\) ,-12+2\(\sqrt{30}\) ) hoặc M(-11-2\(\sqrt{30}\) ,-12-2\(\sqrt{30}\) )

 

16 tháng 12 2018

Chọn A

23 tháng 8 2018

Chọn D.

Phương pháp: Tính thông qua góc giữa các véc tơ chỉ phương và pháp tuyến của đường thẳng và mặt phẳng đó.

6 tháng 3 2017

Chọn A

Tìm giao điểm I từ hệ phương trình đường thẳng d và mặt phẳng (P). Viết phương trình đường thẳng IM. Gọi tọa độ điểm M theo tham số của đường thẳng IM rồi xác định tham số đó từ phương trình  I M = 4 14