K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2018

Đáp án B

Gọi H là hình chiếu của O trên (P) => d(O;(P)) = OH ≤ OM

Dấu bằng xảy ra khi và chỉ khi H ≡ M =>  n P → = (1;2;3) => (P): x + 2y + 3z  - 14 = 0

Mặt phẳng (P) cắt các trục tọa độ lần lượt tại A(14;0;0); B(0;7;0); C(0;0; 14 3 )

Vậy thể tích khối chóp OABC là 

 

29 tháng 9 2019

Đáp án là B

22 tháng 7 2017

9 tháng 10 2015

ta có \(y=\frac{3\left(x+1\right)}{x-2}=3+\frac{9}{x-2}\) để các điểm trên C có tọa độ nguyên thì (x,y) nguyên

suy ra (x-2) là ước của 9

mà \(Ư\left\{9\right\}=\left\{\pm9;\pm3;\pm1\right\}\)

TH1: x-2=-9 suy ra x=-7 suy ra y=3-1=2

th2: x-2=9 suy ra x=11 suy ra y=3+1=4

th3:x-2=-3 suy ra x=-2 suy ra y=3-3=0

th4: x-2=3 suy ra x=5 suy ra y=3+3=6

th5:x-2=1 suy ra x=3 suy ra y=3+9=12

th6: x-2=-1 suy ra x=1 suy ra y=3-9=-6

kết luận....

19 tháng 11 2019

Chọn C.

15 tháng 7 2019

Đáp án C.

Phương pháp: 

- Viết phương trình mặt phẳng α .  

- Tìm tọa độ giao điểm B, C của  α với trục Oy, Oz.

- Tính thể tích khối tứ diện vuông OABC: V = 1 6 . O A . O B . O C .  

Cách giải:

Giả sử n → a ; b ; c ,   a 2 + b 2 + c 2 ≠ 0  là một vecto pháp tuyến của (P).

Vì α đi qua A 2 ; 0 ; 0 nên PTTQ của (P):

a x − 2 + b y − 0 + c z − 0 = 0  

⇔ a x + b y + c z − 2 a = 0.  

Vì α  vuông góc với α nên n → a ; b ; c  vuông góc với n 1 → 0 ; 2 ; − 1 .  

Khi đó,

0. a + 2. b + − 1 . c = 0 ⇔ c = 2 b  

⇒ α : a x + b y + 2 b z − 2 a = 0  

d O ; α = 4 3 ⇔ − 2 a a 2 + b 2 + 4 b 2 = 4 3 ⇔ 6 a 2 = 16 a 2 + 5 b 2 ⇔ a 2 = 4 b 2 ⇔ a = 2 b a = − 2 b  

Cho

b = 1 ⇒ a = 2 a = − 2 ⇒ n → 2 ; 1 ; 2 n → − 2 ; 1 ; 2 ⇒ α : 2 x + y + 2 z − 4 = 0 α : − 2 x + y + 2 z + 4 = 0  

+ )   α : 2 x + y + 2 z − 4 = 0 ⇒ B 0 ; 4 ; 0 ,   C 0 ; 0 ; 2 ⇒ V O A B C = 1 6 . 2 . 4 . 2 = 8 3  

+ )   α : − 2 x + y + 2 z + 4 = 0 ⇒ B 0 ; − 4 ; 0 ,   C 0 ; 0 ; − 2 ⇒ V O A B C = 1 6 . 2 . − 4 . − 2 = 8 3  

Vậy thể tích khối tứ diện OABC là 8 3 .  

2 tháng 10 2019

Đáp án C

18 tháng 2 2017

 

Gọi A(a;0;0), B(0;b;0), C(0;0;c)  và 

Vì O.ABC là hình chóp đều nên

⇔ O A = O B = O C > 0

Do đó với  O A = O B = O C ⇔ a = b = c

Vậy ta có hệ điều kiện: 

Vậy ta có ba mặt phẳng thoả mãn là

x+y=z-6=0; x-y-z+4=0; x-y+z-2=0

Vì vậy 

Chọn đáp án D.

 

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b

28 tháng 1 2018

Đáp án A.

Ta có A M ⊥ B C ⊥ O A ⇒ B C ⊥ O A M ⇒ B C ⊥ O M  

Tương tự ta cũng có O M ⊥ A C ⇒ O M ⊥ P ⇒ P  (P) nhận O M ¯ = 3 ; 2 ; 1  là vecto pháp tuyến.

Trong các đáp án, chọn đáp án mặt phẳng có vecto pháp tuyến có cùng giá với O M ¯  và không chứa điểm M thì thỏa.