Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A(a;0;0), B(0;b;0), C(0;0;c) có và
Vì O.ABC là hình chóp đều nên
⇔ O A = O B = O C > 0
Do đó với O A = O B = O C ⇔ a = b = c
Vậy ta có hệ điều kiện:
Vậy ta có ba mặt phẳng thoả mãn là
x+y=z-6=0; x-y-z+4=0; x-y+z-2=0
Vì vậy
Chọn đáp án D.
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b