Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Gọi C là trọng tâm của tam giác ABC ⇒ G 2 ; 1 ; 3
Khi đó M A → + M B → + M C → = 3 M G → + G A → + G B → + G C → ⏟ 0 = 3 M G → = 3 M G .
Suy ra M G m i n ⇔ M là hình chiếu của G trên mp (Oxy) ⇒ M 2 ; 1 ; 0 .
a) (P) có vec tơ pháp tuyến là \(\overrightarrow{n_1}\left(1;1;1\right)\)
\(\overrightarrow{AB}\left(1;-1;-1\right)\)
Vì (Q) vuông góc với mp (P) và chứa A; B nên véc tơ pháp tuyến của (Q) là \(\overrightarrow{n_2}\) vuông góc với cả \(\overrightarrow{n_1}\left(1;1;1\right)\) và \(\overrightarrow{AB}\left(1;-1;-1\right)\)
=> \(\overrightarrow{n_2}\) = \(\left[\overrightarrow{n_1};\overrightarrow{AB}\right]\) = (0; 2; -2)
mp(Q) đi qua A (-1;2;2) và có vec tơ pt là \(\overrightarrow{n_2}\) có phương trình là: 0.(x +1) + 2(y - 2) -2.(z - 2) = 0 <=> 2y - 2z = 0 <=> y - z = 0
b) đường thẳng AB có vec tơ chỉ phương là \(\overrightarrow{AB}\left(1;-1;-1\right)\) và đi qua B(0;1;1) có phương trình tham số là:
\(\begin{cases}x=t\\y=1-t\\z=1-t\end{cases}\left(t\in R\right)\)
H = AB giao với (P)
H thuộc AB => H (a; 1-a; 1 - a)
H thuộc mp(P) => a + 1- a+ 1 - a = 0 => 2 - a = 0 => a = 2
Vậy H (2; -1; -1)