Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vector pháp tuyến của hai mặt phẳng (\(\alpha\)) và (\(\beta\)) lần lượt là \(\overrightarrow{n_{\alpha}}\)=(4;1;2) và \(\overrightarrow{n_{\beta}}\)=(2; -2;1). Do hai vector này không cùng phương nên hai mặt phẳng (\(\alpha\)) và (\(\beta\)) cắt nhau.
b) Với x=0, \(\left\{{}\begin{matrix}y+2z+1=0\\-2y+z+3=0\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}y=1\\z=-1\end{matrix}\right.\).
Với x=1, \(\left\{{}\begin{matrix}4+y+2z+1=0\\2-2y+z+3=0\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}y=1\\z=-3\end{matrix}\right.\).
Suy ra đường thẳng d đi qua hai điểm A(0;1; -1) và B(1;1; -3), \(\overrightarrow{u_d}\)=\(\overrightarrow{AB}\)=(1;0;-2).
Phương trình cần tìm:
d: \(\left\{{}\begin{matrix}x=t\\y=1\\z=-1-2t\end{matrix}\right.\).
c) Gọi M'(x;y;z). Phương trình đường thẳng d' đi qua M(4;2;1) và nhận vector \(\overrightarrow{n_{\alpha}}\)=(4;1;2) làm vector chỉ phương là:
d': \(\left\{{}\begin{matrix}x=4+4t\\y=2+t\\z=1+2t\end{matrix}\right.\). Gọi M"(4+4t; 2+t; 1+2t) ∈ d'.
M"=d'\(\cap\)(α) ⇒ 4(4+4t)+2+t+2(1+2t)+1=0 ⇒ t= -1 ⇒ M''(0;1; -1).
Điểm M' đối xứng với M qua M'', suy ra M'(-4;0; -3).
d) Gọi N'(a;b;c). Phương trình mp(P) đi qua N(0;2;4) và nhận vector \(\overrightarrow{u_d}\)=(1;0; -2) làm vector pháp tuyến là:
(P): x -2z+8=0. Gọi N''(t;1; -1 -2t) ∈ d.
N''=d\(\cap\)(P) ⇒ t -2( -1 -2t)+8=0 ⇒ t= -2 ⇒ N''(-2;1;3).
Điểm N' đối xứng với N qua N'', suy ra N'(-4;0;2).
N' đối xứng với N qua đường thẳng d nên K là trung điểm của NN'
Vậy N' có tọa độ
Đáp án A.
Ta có vecto chỉ phương của đường thẳng ∆ là
Vecto pháp tuyến của mặt phẳng β : x + y - 2 z + 1 = 0 là
Vì (α) là mặt phẳng chứa đường thẳng ∆ có phương trình và vuông góc với mặt phẳng β : x + y - 2 z + 1 = 0 nên (α) có một vecto pháp tuyến là:
Gọi d = α ∩ β , suy ra d có vecto chỉ phương là
Giao điểm của đường thẳng ∆ có phương trình và mặt phẳng: β : x + y - 2 z + 1 = 0 là I(3;2;2)
Suy ra phương trình đường thẳng
Vậy A(2;1;1) thuộc đường thẳng d.
(β) vuông góc với d
⇒ (β) nhận vtcp của d là 1 vtpt.
(β) đi qua M(0; 0; -2)
⇒ (β): 4x + 3y + z + 2 = 0.
Chọn A.
Mặt phẳng chứa A, B và vuông góc với (β) nên (α) có một vectơ pháp tuyến là: