K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

Chọn D

Gọi G (2;2;-2) là trọng tâm tam giác ABC, khi đó 

Ta có:

đạt giá trị nhỏ nhất khi M là hình chiếu vuông góc của G trên mặt phẳng (P). Khi đó tọa độ của M (a;b;c) và vecto  cùng phương với vecto pháp tuyến n (1;-2;2) thỏa mãn hệ 

Vậy a+b+c=3.

1 biết \(\int_3^7\) f(x)dx=4 . Tính E=\(\int_3^7\) [f(x)+1] 2 tính diện tích S của hình phẳng giới hạn bởi các đường y =\(\frac{2x-1}{-x+1}\) và hai trục tọa độ 3 phuog trình \(z^2+az+b=0,\left(a,b\in R\right)\) có một nghiệm là z=-2+i.Gía trị a - b bằng 4 trong không gian hệ tọa độ oxyz, phương trình mặt phẳng qua M (1;1;1) song song (oxy) là 5 trong không gian oxyz, cho mp (P) 2x+y-z-1=0 và (Q) x-2y+z-5=0 . Khi đó, giao...
Đọc tiếp

1 biết \(\int_3^7\) f(x)dx=4 . Tính E=\(\int_3^7\) [f(x)+1]

2 tính diện tích S của hình phẳng giới hạn bởi các đường y =\(\frac{2x-1}{-x+1}\) và hai trục tọa độ

3 phuog trình \(z^2+az+b=0,\left(a,b\in R\right)\) có một nghiệm là z=-2+i.Gía trị a - b bằng

4 trong không gian hệ tọa độ oxyz, phương trình mặt phẳng qua M (1;1;1) song song (oxy) là

5 trong không gian oxyz, cho mp (P) 2x+y-z-1=0 và (Q) x-2y+z-5=0 . Khi đó, giao tuyến của (P) và (Q) có một vecto chỉ phương là

A \(\overline{u}\) (1;-2;1) B \(\overline{u}\) (1;3;5) C \(\overline{u}\) (2;1-1) D \(\overline{u}\) (-1;3;-5)

6 trong ko gian oxyz cho điểm A(0;1;-2) .Tọa độ điểm H là hình chiếu vuông góc của điểm A trên mặt phẳng (P) :-x-2y+2z-3=0 là

7 trong ko gain oxyz cho điểm A(1;0;2).Tọa độ điểm H là hình chiều vuông góc của điểm A trên đường thẳng d :\(\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z+3}{3}\)

8 trong ko gian oxyz , mặt phẳng nào sau đây nhận vecto \(\overline{n}\) =(1;2;3) làm vecto pháp tuyến

A 2z-4z+6=0 B x+2y-3z-1=0 C x-2y+3z+1=0 D 2x+4y+6z+1=0

9 Trong ko gian oxyz , cho ba điểm A(2;1;-1),B(-1;0;4),C(0;-2;-1) .Phương trình nào sau đây là phương trình của mặt phẳng A và vuông góc BC

A :x-2y-5z+5=0 B x-2y-5z-5=0 C x-2y-5z=0 D 2x-y+5z-5=0

10 trong không gian oxyz , cho hai điểm A(4;1;0) ,B(2;-1;2).Trong các vecto sau , một vecto chỉ phương của đường thẳng AB là

A \(\overline{U}\) (3;0;-1) B \(\overline{u}\) (1;1;-1) C \(\overline{u}\) (2;2;0) D \(\overline{u}\) (6;0;2)

11 Trong ko gian oxyz, viết pt tham số của đường thẳng đi qua hai điểm A(1;2;-3) ,B(2;-3;1)

12 Trong ko gian oxyz, cho điểm A(-2;0;3) và mp (p) -2X+Y-Z+11=0.Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên mp (P)

13 trong ko gian vói hệ tọa độ oxyz, cho điểm A(1;0;2).TỌA độ điểm \(A^'\) (A phẩy) là điểm đối xúng của điểm A qua đường thẳng d :\(\frac{x-1}{2}=\frac{y+1}{-1}\frac{z+3}{3}\)

0
NV
21 tháng 4 2020

Mặt phẳng gọi là (P) đi cho dễ gõ kí tự.

Thay tọa độ A; B vào (P) cho 2 kết quả cùng dấu dương \(\Rightarrow\) A và B nằm cùng phía so với (P)

Gọi A' là điểm đối xứng với A qua (P), với điểm M bất kì thuộc (P) ta luôn có \(MA=MA'\Rightarrow MA+MB=MA'+MB\ge A'B\)

\(\Rightarrow MA+MB_{min}\) khi M;B;A' thẳng hàng hay M là giao điểm của đường thẳng A'B và (P)

Pt tham số của đường thẳng d qua A và vuông góc (P) nhận \(\left(1;-2;0\right)\) là vtcp: \(\left\{{}\begin{matrix}x=1+t\\y=-2t\\z=-2\end{matrix}\right.\)

Gọi C là giao của d và (P) \(\Rightarrow\) tọa độ C thỏa mãn:

\(1+t-2\left(-2t\right)+11=0\Rightarrow t=-\frac{12}{5}\) \(\Rightarrow C\left(-\frac{7}{5};\frac{24}{5};-2\right)\)

C là trung điểm AA' \(\Rightarrow A'\left(-\frac{19}{5};\frac{48}{5};-2\right)\)

\(\Rightarrow\overrightarrow{A'B}=\left(\frac{24}{5};-\frac{43}{5};-3\right)=\frac{1}{5}\left(24;-43;-15\right)\)

Phương trình tham số A'B: \(\left\{{}\begin{matrix}x=1+24t\\y=1-43t\\z=-5-15t\end{matrix}\right.\)

Tọa độ M thỏa mãn:

\(1+24t-2\left(1-43t\right)+11=0\Rightarrow t=-\frac{1}{11}\) \(\Rightarrow M\left(-\frac{13}{11};\frac{54}{11};-\frac{40}{11}\right)\)

Kết quả ko giống, bạn xem lại đề bài có ghi nhầm chỗ nào ko

23 tháng 5 2016
a) Gọi H là trung điểm của  BC thì H là hình chiếu vuông góc của  B trên mp(P)
mp(P)  có vecto pháp tuyến  \(\overrightarrow{n}\)=(1;1;1). Nếu gọi  Δ là đường thẳng  qua B và vuông góc với (P) thì Δ có phương  trình tham số  là: \(\begin{cases}x=5+t\\y=-1+t\\z=-2+t\end{cases}\) (t\(\in R\) )
Tọa độ H ứng với t là nghiệm đúng của phương trình : \(\left(5+t\right)+\left(-1+t\right)+\left(-2+t\right)+1=0\Leftrightarrow t=-1\)
Suy ra \(H\left(4;-2;-3\right)\) và \(\begin{cases}x_C=4.2-5=3\\y_c=-2.2+1=-3\\z_C=-3.2+2=-4\end{cases}\) Vậy \(C\left(3;-3;-4\right)\)
 
Gọi \(f\left(M\right)=x+y+z-1\) Với \(M\left(x;y;z\right);A\left(1;-3;0\right);B\left(5;-1;-2\right)\)
Ta có : \(f\left(A\right)=-3< 0;f\left(B\right)=1>0\) \(\Rightarrow\) A;B nằm khác phía đối với mp(P)
Do đó 2 điểm B,C đối xứng nhau qua mp(P) nên M là 1 điểm bất kì trên mp(P) ta luôn có \(MB=MC\)
Ta có: \(\left|MA-MB\right|=\left|MA-MC\right|\le AC\) 
Đẳng thức xảy ra khi 3 điểm A,C,M thẳng hàng và điểm M nằm ngoài AC. Khi đó M trùng với Mo là giao điểm của đường thẳng AC với mp(P). đường thẳng AC có VTCP \(\overrightarrow{u}=\left(2;0;-4\right)\) PTTS AC : \(\begin{cases}x=1+2t\\y=-1\\z=-4t\end{cases}\)
Tọa độ Mo ứng với t là nghiệm đúng của pt: \(\left(1+2t\right)-1-4t-1=0\Leftrightarrow t=\frac{-1}{2}\) 
Suy ra \(M_o\left(0;-1;2\right)\)
Vậy max \(\left|MA-MB\right|=AC=2\sqrt{5}\) khi M ở vị trí M(0;-1;2)
17 tháng 5 2016

Gọi I là trung điểm của đoạn thẳng AB. Khi đó \(I\left(2;0;2\right)\) với mọi điểm M đều có :

\(MA^2+MB^2=\overrightarrow{MA^2}+\overrightarrow{MB^2}\)

                       \(=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2\)

                       \(=2MI^2+\left(IA^2+IB^2\right)=2MI^2+\frac{AB^2}{2}\)

Do đó \(M\in\left(P\right)\) sao cho \(MA^2+MB^2\) bé nhất khi và chỉ khi M là hình chiếu của I trên mặt phẳng (P)

Gọi \(\left(x;y;z\right)\) là tọa độ hình chiếu vuông góc của điểm I trên mặt phẳng (P). Khi đó ta có hệ phương trình :

\(\begin{cases}x+y+z-6=0\\\frac{x-2}{1}=\frac{y-0}{1}=\frac{z-2}{1}\end{cases}\)

Giải hệ thu được :

\(x=\frac{8}{3};y=\frac{2}{3};z=\frac{8}{3}\)

Vậy điểm M cần tìm là \(M\left(\frac{8}{3};\frac{2}{3};\frac{8}{3}\right)\)

1trong ko gian hệ tọa độ oxyz, cho 2 điểm M(3;-2;1),N(0;1;-1). tìm độ dài của đoạn thẳng MN 2 Bốn điểm A,B,C,D sau đây đồng phẳng. chọn đáp án sai A (1;1;-2), B(0;1;-1),C(3;-1;-2)D(-1;0-1) B A(0;0;5),B(1;1;10), C(1;0;7), D(-4;1;0) C A(1;1;-3),B(1;0;-2) C(5;1;1),D(1;1;5) D A(1;1;-1),b(3;6;0),c(3;0;-2),d(0;3;0) 3 Trong ko gian với hệ tọa độ oxyz, cho ba vecto \(\overline{a}\) (-1;4;-2) và \(\overline{b}\) (1;1;0) \(\overline{c}\) (1;1;1). trong các mệnh đề sau,...
Đọc tiếp

1trong ko gian hệ tọa độ oxyz, cho 2 điểm M(3;-2;1),N(0;1;-1). tìm độ dài của đoạn thẳng MN

2 Bốn điểm A,B,C,D sau đây đồng phẳng. chọn đáp án sai

A (1;1;-2), B(0;1;-1),C(3;-1;-2)D(-1;0-1)

B A(0;0;5),B(1;1;10), C(1;0;7), D(-4;1;0)

C A(1;1;-3),B(1;0;-2) C(5;1;1),D(1;1;5)

D A(1;1;-1),b(3;6;0),c(3;0;-2),d(0;3;0)

3 Trong ko gian với hệ tọa độ oxyz, cho ba vecto \(\overline{a}\) (-1;4;-2) và \(\overline{b}\) (1;1;0) \(\overline{c}\) (1;1;1). trong các mệnh đề sau, mệnh đề nào sai

A/\(\overline{a}\)/=\(\sqrt{2}\) B\(\overline{a}\perp\overline{b}\) C /\(\overline{c}\)/=\(\sqrt{3}\) D\(\overline{b}\perp\overline{c}\)

4 trong ko gian oxyz, cho hai vecto \(\overline{a}\) (2;4;-2) và \(\overline{b}\) (1;-2;3). tích vô hướng của hai vecto a và b là

5 trong ko gain với hệ tọa độ oxyz cho \(\overline{a}\) (1;-2;3) và \(\overline{b}\) (2;-1;-1 . khẳng định nào sau đây đúng

A[\(\overline{a,}\overline{b}\)]=(-5;-7;-3) B veto \(\overline{a}\) ko cùng phương với vecto \(\overline{b}\)

C vecto \(\overline{a}\) ko vuông góc với vecto \(\overline{b}\) D/\(\overline{a}\)/=\(\sqrt{14}\)

6 trong ko gian với hệ tọa độ oxyz, cho ba vecto \(\overline{a}\) (-1;1;0) và \(^{\overline{b}}\)(1;1;0), \(\overline{c}\)(1;1;1. trong các mệnh đề sau mệnh đề nào sai

A/\(\overline{a}\) /=\(\sqrt{2}\) B/\(\overline{c}\)/=\(\sqrt{3}\)

C \(\overline{a}\perp\overline{b}\) D\(\overline{c}\perp\overline{b}\)

7 trong ko gian với hệ trục oxyz , mặt cầu tâm I(1;-2;3) , bán kính R =2 có pt là

8 mặt cầu tâm I(2;2;-2) bán kính R tiếp xúc với mp (P):2x-3y-z+5=0. bán kính R là

9 trong ko gian với hệ tọa độ oxyz , mặt cầu (S), tâm I(1;2;-3) và đi qua A(1;0;4) có pt là

10 trong ko gian với hệ trục tọa độ oxyz, cho hai điểm A(-1;2;1), B(0;2;3). viết pt mặt cầu có đường kính AB

11 trong ko gian với hệ trục oxyz cho hai điểm M(6;2;-5),N(-4;0;7). viết pt mặt cầu đường kính MN

12 tro ko gian với hệ trục oxyz, cho điểm I(0;-3;0). viết pt mặt cầu tâm I và tiếp xúc với mp(oxz)

13 trong ko gian oxyz cho điểm M(1;1;-2) và mặt phẳng \(\alpha\) :x-y-2z=3 . viết pt mặt cầu S có tâm M tiếp xúc với mp \(\alpha\)

14 viết pt mặt cầu (S) có tâm I(-1;2;1) và tiếp xúc với mp (P):x-2y-2z-2=0

5
13 tháng 5 2020

câu 5 ấy chắc thầy tui buồn ngủ nên quánh lộn chữ sai thành đúng r

NV
13 tháng 5 2020

12.

\(R=d\left(I;Oxz\right)=\left|y_I\right|=3\)

Phương trình:

\(x^2+\left(y+3\right)^2+z^2=9\)

\(\Leftrightarrow x^2+y^2+z^2+6y=0\)

13.

\(R=d\left(M;\alpha\right)=\frac{\left|1-1+2.2-3\right|}{\sqrt{1^2+1^2+2^2}}=\frac{1}{\sqrt{6}}\)

Pt mặt cầu:

\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=\frac{1}{6}\)

14.

\(R=d\left(I;\left(P\right)\right)=\frac{\left|-1-4-2-2\right|}{\sqrt{1^2+2^2+2^2}}=3\)

Phương trình:

\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2=9\)

\(\Leftrightarrow x^2+y^2+z^2+2x-4y-2z-3=0\)

1 cho số phức z=a+bi (b>0) thỏa z+\(\overline{z}\) =10 và /z/ =13. giá trị của a+b là 2 pt z^2+ax+b=0,(a,b\(\in\) R) có một nghiệm z=-2+i .giá trị của a-b la 3 gọi z1,z2 là hai nghiệm phức của pt z^2+2z+8=0, trong đó z1 có phần ảo dương . số phức w=(2z1+z2).\(\overline{z}_1\) là 4 kí hiệu z1,z2, z3 va z4 là bốn nghiệm phức của pt z^4-z^2-12=0. giá trị của T=/z1/+/z2/+/z3/+/z4/ bằng 5 trong ko gian hệ tọa độ oxyz, cho...
Đọc tiếp

1 cho số phức z=a+bi (b>0) thỏa z+\(\overline{z}\) =10 và /z/ =13. giá trị của a+b là

2 pt z^2+ax+b=0,(a,b\(\in\) R) có một nghiệm z=-2+i .giá trị của a-b la

3 gọi z1,z2 là hai nghiệm phức của pt z^2+2z+8=0, trong đó z1 có phần ảo dương . số phức w=(2z1+z2).\(\overline{z}_1\)

4 kí hiệu z1,z2, z3 va z4 là bốn nghiệm phức của pt z^4-z^2-12=0. giá trị của T=/z1/+/z2/+/z3/+/z4/ bằng

5 trong ko gian hệ tọa độ oxyz, cho 2 điểm M(3;-2;1),N(0;1;-1). tìm độ dài của đoạn thẳng

6 trong ko gian với tọa độ oxyz. cho 2 điểm A(-3;1;-4 va B(1;-1;2). pt mặt cầu S nhận AB làm đường kính là

7 trong ko gian vói hệ tọa độ oxyz, viết pt mặt cầu tâm I(3;2;4) và tiếp xúc với trục oy là

8 pt mặt cầu S tâm I(1;3;5) và tiếp cú với đường thẳng \(\frac{x}{1}=\frac{y+1}{-1}=\frac{z-2}{-1}\)

9 trong không gian với hệ tọa độ oxyz , cho điểm I(-1;0;0) và đường thẳng d:\(\left\{{}\begin{matrix}x=2+t\\y=1+2t\\z=1+t\end{matrix}\right.\) pt mặt cầu S có tâm I và tiếp xúc với đường thẳng d là

10 trong ko gian với hệ tọa độ oxyz, cho 2 điểm A(1;2;2),B(3;-2-0). viết pt mặt phẳng trung trực đoạn AB

11 trong ko gian với hệ tọa độ oxyz, cho 2 điểm A(4;0;1) và B(-2;2;3). pt mặt phẳng trung trực đoạn AB là

12 trong ko gian oxyz, mặt phẳng \(\alpha\) đi qua gốc tọa độ(0;0;0) va2 co1 vecto phap tuyen n=(6;3;-2) thi co pt ?

13 trong ko gian oxyz , cho 2 điểm A(1;-2;4) B(2;1;2). viết pt mặt phẳng (P) vuông góc với đường AB tại điểm A LÀ

14 Trong ko gian với hệ tọa độ oxyz ,mp qua A(2;3;1) và B(0;1;2).pt mặt phẳng (P) đi qua A và vuông góc AB là

15 trong ko gian hệ tọa độ oxyz, ,p đi qua điểm A (2;-3;-2) và có vecto pháp tuyến \(\overline{n}\)=(2;-5;1) có pt là

16 viết pt mặt phẳng (P) qua A (1;1;1) vuông góc với hai mp \(\alpha\) :x+y-z-2=0 \(\beta\) x-y+z-1=0

17 trong ko gian với hệ tọa độ oxyz cho hai mp(p):x-y+z=0,(Q):3x+2y-12z+5=0 , viết pt mặt phẳng (R) đi qua O và vuông góc với (P),(Q)

18 trong ko gian hệ tạo độ oxyz, mp(Q) đi qua 3 điểm ko thẳng hang M(2;2;0),N(2;0;3),P(0;3;3) có pt là

19 trong ko gian với hệ tọa độ oxyz cho mặt phẳng \(\alpha\) cắt 3 trục tọa M (3;0;0),N(0;-4;0) ,P(0;0;-2). pt mặt phẳng \(\alpha\)?

20 rong ko gian với hệ tọa độ oxyz , cho ba điểm A(1;0;0),B(0;2;0)C(0;0;3). HỎI MẶT MẶT PHẲNG NÀO DƯỚI ĐÂY ĐI QUA BA ĐIỂM A,B VÀ C

A (q) X/3+Y/2+Z/3=1 B (S)X+2Y+3Z=-1

C (P) X/1+Y/2+Z/3=0 D (r):X+2Y+3Z=1

7
NV
16 tháng 5 2020

19.

Phương trình mặt phẳng theo đoạn chắn:

\(\frac{x}{3}+\frac{y}{-4}+\frac{z}{-2}=1\)

\(\Leftrightarrow4x-3y-6z-12=0\)

20.

Phương trình mặt phẳng (ABC) theo đoạn chắn:

\(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)

\(\Leftrightarrow6x+3y+2z-6=0\)

Chẳng đáp án nào đúng cả, chắc bạn ghi nhầm đáp án C số 1 thành số 0 :)

NV
16 tháng 5 2020

15.

\(2\left(x-2\right)-5\left(y+3\right)+1\left(z+2\right)=0\)

16.

\(\overrightarrow{n_1}=\left(1;1;-1\right)\) ; \(\overrightarrow{n_2}=\left(1;-1;1\right)\)

\(\left[\overrightarrow{n_1};\overrightarrow{n_2}\right]=\left(0;-2;-2\right)=-2\left(0;1;1\right)\)

Phương trình (P):

\(1\left(y-1\right)+1\left(z-1\right)=0\Leftrightarrow y+z-2=0\)

17.

\(\overrightarrow{n_P}=\left(1;-1;1\right)\) ; \(\overrightarrow{n_Q}=\left(3;2;-12\right)\)

\(\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(10;15;5\right)=5\left(2;3;1\right)\)

Phương trình mặt phẳng (R):

\(2x+3y+z=0\)

18.

\(\overrightarrow{MN}=\left(0;-2;3\right);\overrightarrow{MP}=\left(-2;1;3\right)\)

\(\left[\overrightarrow{MN};\overrightarrow{MP}\right]=\left(-9;-6;-4\right)=-1\left(9;6;4\right)\)

Phương trình:

\(9\left(x-2\right)+6\left(y-2\right)+4z=0\)

\(\Leftrightarrow9x+6y+4z-30=0\)

14 tháng 4 2016

\(\overrightarrow{AB}=\left(-1;-2;1\right)\)\(\overrightarrow{n_{\alpha}}=\left(2;-1;2\right)\)\(\Rightarrow\overrightarrow{n_p}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(-3;4;5\right)\)

Phương trình mặt phẳng (P) : \(-3x+4y+5z=0\)

\(R=d\left(A;\left(\alpha\right)\right)=\frac{\left|6-1+2+1\right|}{\sqrt{9}}=\frac{8}{3}\)

Phương trình mặt cầu (S) : \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=\frac{64}{9}\)