Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Gọi I x ; y ; z thỏa mãn
I A → + 2 I B → + 5 I C → = 0 ⇒ x = 3 + 2. ( − 3 ) + 5. ( − 1 ) 8 = − 1 y = − 1 + 2.0 + 5. ( − 3 ) 8 = − 2 z = − 3 + 2. ( − 1 ) + 5.1 8 = 0
⇒ I = ( − 1 ; − 2 ; 0 )
Ta có
M A → + 2 M B → + 5 M C → = M I → + I A → + 2 M I → + 2 I B → + 5 M I → + 5 I C →
= 8 M I → + I A → + 2 I B → + 5 I C → = 8 M I →
⇒ M A → + 2 M B → + 5 M C → min ⇔ 8 M I → min <=> M là hình chiếu của I lên (P)
Gọi Δ là đường thẳng đi qua I − 1 ; 2 ; 0 và vuông góc với
( P ) : 2 x + 4 y + 3 z − 19 = 0 có vectơ chỉ phương là 2 ; 4 ; 3 ⇒ Δ : x = − 1 + 2 t y = − 2 + 4 t z = 3 t
Thế vào (P)
⇒ 2 ( − 1 + 2 t ) + 4 ( − 2 + 4 t ) + 3 ( 3 t ) − 19 ⇔ t = 1
⇒ x = 1 y = 2 z = 3 ⇒ M 1 ; 2 ; 3 ⇒ a + b + c = 6
Đáp án B
Phương pháp: (P) cách đều B, C ó d(B;(P)) = d(c;(P))
TH1: BC // (P)
TH2: I ∈ (P), với I là trung điểm của BC
Cách giải:
Ta có:
(P) cách đều B, C ó d(B;(P)) = d(c;(P))
TH1: BC // (P)
=> (P) đi qua O và nhận là 1 VTPT
TH2: I ∈ (P) với I là trung điểm của BC
=> (P): 6x – 3y + 4z = 0
Dựa vào các đáp án ta chọn được đáp án B
Đáp án B
Ta có a → − 4 c → = − 1 ; 4 ; 2
⇒ 2 b → = a → − 4 c → ⇒ b → = − 1 2 ; 2 ; 1
Chọn đáp án B