Trên tia Ax lấy các điểm B, C, D theo thứ tự đó sao cho:  A B =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

ko biết nhưng hãy tích dùng hộ mình đi

14 tháng 12 2016

Mọi người ơi giúp em với huhu :((((

29 tháng 7 2021

Bài 209 : đăng tách ra cho mn cùng làm nhé 

a,sửa đề :  \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

\(=\left(3x+1-3x-5\right)^2=\left(-4\right)^2=16\)

b, \(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)

\(2B=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)=\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(2B=3^{64}-1\Rightarrow B=\frac{3^{64}-1}{2}\)

c, \(C=\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)

\(=2\left(a-b+c\right)^2-2\left(b-c\right)^2=2\left[\left(a-b+c\right)^2-\left(b-c\right)^2\right]\)

\(=2\left(a-b+c-b+c\right)\left(a-b+c+b-c\right)=2a\left(a-2b+2c\right)\)

11 tháng 12 2019

Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath

Ở link trên đã tìm đc các giá trị của a, b, c, d thay vào tìm đc M = 0.

1/ a. Chứng minh công thức Hê-rông tính diện tích tam giác theo 3 cạnh a,b,c S=\(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) (p là nửa chu vi) b. Áp dụng chứng minh rằng nếu \(S=\dfrac{1}{4}\left(a+b-c\right)\left(a+c-b\right)\) thì tam giác đó là tam giác vuông 2/ Cho tứ giác ABCD. Lấy \(M,N\in AB\) sao cho AM=MN=NB. Lấy \(E,F\in BC\) sao cho BE=EF=FC. Lấy \(P,Q\in CD\) sao cho CP=PQ=QD. Lấy \(G,H\in AD\) sao cho DG=GH=HA. Gọi...
Đọc tiếp

1/ a. Chứng minh công thức Hê-rông tính diện tích tam giác theo 3 cạnh a,b,c S=\(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) (p là nửa chu vi)

b. Áp dụng chứng minh rằng nếu \(S=\dfrac{1}{4}\left(a+b-c\right)\left(a+c-b\right)\) thì tam giác đó là tam giác vuông

2/ Cho tứ giác ABCD. Lấy \(M,N\in AB\) sao cho AM=MN=NB. Lấy \(E,F\in BC\) sao cho BE=EF=FC. Lấy \(P,Q\in CD\) sao cho CP=PQ=QD. Lấy \(G,H\in AD\) sao cho DG=GH=HA. Gọi A',B' là giao điểm của MQ và NP với EH, C',D' là giao điểm của MQ và NP với FG. Chứng minh rằng

a. \(S_{MNPQ}=\dfrac{1}{3}S_{ABCD}\) b. \(S_{A'B'C'D'}=\dfrac{1}{9}S_{ABCD}\)

3/ Lấy M tùy ý nằm trong tam giác ABC. Gọi D,E,F là hình chiếu của M trên BC,AC,AB. Đặt BC=a,AC=b,AB=c,MD=x,ME=y,MF=z. Chứng minh rằng

a. ax+by+cz=2S (S=Sabc)

b. \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\ge\dfrac{2p^2}{S}\) (\(p=\dfrac{a+b+c}{2}\) )

0

a) Xét \(\Delta AOC\)\(\Delta BOD\) có:

\(\widehat{ACO}=\widehat{BDO}=90^o;\widehat{AOB}:chung;OA=OB\)

\(\Rightarrow\) \(\Delta AOC\) = \(\Delta BOD\) \(\Rightarrow\) \(\widehat{OAC}=\widehat{OBD}\)

b) Xét \(\Delta OAB\) có : OA = OB \(\Rightarrow\) \(\Delta OAB\) cân tại O

\(\Rightarrow\) \(\widehat{OAB}=\widehat{OBA}\)

\(\widehat{OAC}+\) \(\widehat{CAB}=\widehat{OAB}\) ; \(\widehat{OBD}+\widehat{DBA}=\widehat{OBA}\)

\(\widehat{OAB}=\widehat{OBA}\) ; \(\widehat{OAC}=\widehat{OBD}\)

\(\Rightarrow\widehat{CAB}=\widehat{DBA}\Rightarrow\Delta IAB\) cân tại I

\(\Rightarrow IA=IB\)

c) Xét \(\Delta IBC\) vuông tại C

=> IB > IC mà IB = IA

=> IA > IC

25 tháng 5 2019

Cho góc nhọn xOy.Trên tia Ox lấy điểm A (A \(\ne\) O); trên tia Oy lấy điểm B

(B khác O) sao cho OA = OB. Kẻ AC Oy (C Oy); BDOx (D Ox).Gọi I là giao điểm của AC và BD.

a. Chứng minh \(\Delta\) AOC = \(\Delta\) BOD

b. Chứng minh \(\Delta\) AIB cân

c. So sánh IC và IA

25 tháng 6 2016

mỗi tỉ số đã cho đều bớt đi 1 ta được :

\(\frac{2a+b+c+d}{a}\) - 1 = \(\frac{a+2b+c+d}{b}\)  - 1 = \(\frac{a+b+2c+d}{c}\)  - 1 = \(\frac{a+b+c+2d}{d}\)  - 1 

\(\frac{a+b+c+d}{a}\)   = \(\frac{a+b+c+d}{b}\)  = \(\frac{a+b+c+d}{c}\)  = \(\frac{a+b+c+d}{d}\)  

- Nếu a+b+c+d \(\ne\)  0 thì a = b = c =d lúc đó M = 1 + 1 + 1 + 1 = 4

- Nếu a + b + c + d = 0 thì a + b = - ( c + d ) ; b + c = - ( d + a )

                                            c + d = - ( a + b ) ; d + a = - ( b + c )

Lúc đó : M= (-1 ) + (-1) + (-1) + (-1) = -4

25 tháng 6 2016

Lấy 1 điểm O tùy ý , Qua O vẽ 9 đường thẳng lần lượt song song với 9 đường thẳng đã cho 9 đường thẳng qua O tạo thành 18 góc không có điểm trong chung , mỗi góc này tương ứng bằng góc giữa 2 đường thẳng tronh số 9 đường thẳng đã cho . Tổng số đo của 18 góc đỉnh O là 360 độ do đó ít nhất có một góc nhỏ hơn 360 : 18 = 20 , từ đó suy ra ít nhất cũng có hai đường thẳng mà góc nhọn giữa chúng không nhỏ hơn 20 độ