Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoành độ giao điểm (P) ; (d) tm pt
\(\frac{1}{2}x^2-x-\frac{1}{2}m^2-m-1=0\)
\(\Leftrightarrow x^2-2x-m^2-2m-2=0\)
\(\Delta'=1-\left(-m^2-2m-2\right)=m^2+2m+3=\left(m+1\right)^2+2>0\)
Vậy pt luôn có 2 nghiệm pb
Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2-2m-2\end{cases}}\)
Ta có \(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=68\)
\(\Leftrightarrow8-6\left(-m^2-2m-2\right)=68\)
\(\Leftrightarrow6m^2+12m-48=0\Leftrightarrow m=2;m=-4\)
Xét Pt hoành độ.......
\(\dfrac{1}{2}x^2=x+\dfrac{1}{2}m^2+m+1\\ \Leftrightarrow x^2-2x-m^2-2m-2=0\left(1\right)\)
Để ... thì Δ'>0
1+m2+2m+2>0 ⇔(m+1)2+2>0 (Hiển nhiên)
Với mọi m thì (1) sẽ có 2 nghiệm x1; x2.
*) Theo Hệ thức Viet ta có:
S=x1+x2=2 và P=x1x2= -m2-2m-2
*)Ta có:
\(\text{x^3_1 +x ^3_2 =68\Leftrightarrow(x_1+x_2)(x_1}^2-x_1x_2+x_2^2\left(\right)=68\\ \)
⇔(x1+x2)[(x1+x2)2-2x1x2-x1x2 ]=68 ⇔2[22-3(-m2-2m-2)]=68
⇔3m2+6m-24=0⇔m=2 và m=-4
KL:
a) Đường thẳng (d) đi qua điểm A(1 ;0) => x = 1; y = 0
Do đó: 0 = 2m.1 + 1 <=> 2m = -1 <=> m = -1/2
b) Phương trình hoành độ giao điểm giữa đường thẳng (d) và hàm số (P): y = 2x2 là:
2x2 = 2mx + 1 <=> 2x2 - 2mx - 1 = 0
\(\Delta'=\left(-m\right)^2+2=m^2+2>0\)
=> phương trình luôn có 2 nghiệm phân biệt
Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-\frac{1}{2}\end{cases}}\)
Theo bài ra, ta có: \(\hept{\begin{cases}x_1< x_2\\\left|x_2\right|-\left|x_1\right|=2021\end{cases}}\)
<=> \(\left(\left|x_2\right|-\left|x_1\right|\right)^2=2021^2\)
<=> \(x_1^2+x_2^2-2\left|x_1x_2\right|=2021^2\)
<=> \(\left(x_1+x_2\right)^2-2x_1x_2-2\left|-\frac{1}{2}\right|=2021^2\)
<=> \(m^2+\frac{2.1}{2}-1=2021^2\)
<=> \(m^2=2021^2\)
<=> \(x=\pm2021\)
Vậy với m = \(\pm\)2021 để (d) vắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thõa mãn x1 < x2 và |x2| - |x1| = 2021
a) Lập phương trình hoành độ giao điểm:
x2 = mx + 3
<=> x2 - mx - 3 = 0
Tọa độ (P) và (d) khi m = 2:
<=> x2 - 2x - 3 = 0
<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)
Tọa độ (P) và (d): A(3; 9) và B(-1; 1)
b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)
<=> (-m)2 - 4.1(-3) > 0
<=> m2 + 12 > 0 \(\forall m\)
Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)
<=> 2x2 + 2x1 = 3x1x2
<=> 2(x2 + x1) = 3x1x2
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)
<=> 2m = 3(-3)
<=> 2m = -9
<=> m = -9/2
a) Phương trình hoành độ giao điểm của (d) và (P) là
\(x^2=\left(m-1\right)x+4\Leftrightarrow x^2-\left(m-1\right)x-4=0\)
Ta có \(\Delta=\left(m-1\right)^2-4.\left(-4\right)=\left(m-1\right)^2+16\)
Vì \(\left(m-1\right)^2\ge0\forall m\Rightarrow\left(m-1\right)^2+16>0\forall m\)hay \(\Delta>0\)
Suy ra phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt với mọi giá trị của m
Do đó đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt với mọi m
(hoặc lập luận cho ac=1.(-4)<0 nên có 2 nghiệm phân biệt ...)
b) Theo chứng minh ý a thì phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt , áp dụng hệ thức Vi-ét:
\(\hept{\begin{cases}x_1+x_2=m-1\\x_1x_2=-4\end{cases}}\)
Khi đó : \(y_1+y_2=y_1.y_2\Leftrightarrow x_1^2+x_2^2=x_1^2.x_2^2\)( có cái này là do parabol P y=x^2)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\left(x_1x_2\right)^2\Leftrightarrow\left(m-1\right)^2-2.\left(-4\right)=\left(-4\right)^2\)
\(\Leftrightarrow\left(m-1\right)^2=8\Leftrightarrow\orbr{\begin{cases}m-1=2\sqrt{2}\\m-1=-2\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}+1\\m=1-2\sqrt{2}\end{cases}}\)
Vậy...........................
a/
hoành độ giao điểm của (d) và ( p ) là nghiệm của phương trình
\(x^2-\left(m-1\right)x-4=0\)
den ta = \(\left(m-1\right)^2+16>0\forall m\)
=> phương trình luôn có 2 nghiệm phân biệt với mọi m
b/
vì \(y_1,y_2\) là tung độ giao điểm của (d ) và ( p )
=> \(y_1=x_1^2\)
\(y_2=x_2^2\)
theo vi - ét có \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-4\end{cases}}\)
ta có \(y_1+y_2=y_1.y_2\)
<=> \(x_1^2+x_2^2=x_1^2x_2^2\)
<=> \(\left(x_2+x_{ }_1\right)^2-2x_1x_2-x_1^2.x_2^2=0\)
<=> \(\left(m-1\right)^2-2.\left(-4\right)-\left(-4\right)^2=0\)
<=> \(m^2-2m+1+8-16=0\)
<=> \(m^2-2m-7=0\)
<=>\(\left(m-1\right)^2-8=0\)
<=> \(\left(m-1\right)^2=8\)
<=> \(m-1=2\sqrt{2}\left(h\right)m-1=-2\sqrt{2}\)
<=> \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)
vậy \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)
CHÚC BẠN HỌC TỐT
ĐK \(x_2\ge0;\)
Phương trình hoành độ giao điểm
x2 = mx + m + 1
\(\Leftrightarrow x^2-mx-m-1=0\)
Có \(\Delta=m^2+4\left(m+1\right)=\left(m+2\right)^2\ge0\)
\(\Rightarrow\)Phương trình có nghiệm với mọi m
Phương trình 2 nghiệm \(\hept{\begin{cases}x_1=\frac{m-\left|m+2\right|}{2}\\x_2=\frac{m+\left|m+2\right|}{2}\end{cases}}\)
Khi m + 2 < 0 thì x1 = m + 1 ; x2 = -1 (loại)
khi m + 2 \(\ge0\)thì x1 = -1 ; x2 = m + 1
\(\Rightarrow x_1=-1;x_2=m+1\)nghiệm phương trình
Khi đó ta có -1 + m - m = \(\sqrt{m+1}-\sqrt[3]{8}\)
\(\Leftrightarrow\sqrt{m+1}=1\Leftrightarrow m=0\)(tm)
a, Thay m = 7 ta được y = x + 7 - 1 = x + 6
Hoành độ giao điểm tm pt
\(x^2-x-6=0\)
\(\Delta=1-4\left(-6\right)=1+24=25>0\)
Vậy pt có 2 nghiệm pb
hay (P) cắt (D) tại 2 điểm pb