Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
+ Bước sóng: λ = v/f = 40/20 = 20(cm)
+ Vì hai nguồn ngược pha và điểm M thuộc cực đại nên: MA – MB = (k + 0,5)λ
+ Điểm M gần A nhất khi M thuộc đường cực đại gần A nhất.
+ Số cực đại trên AB:
- AB λ - 1 2 < k < AB λ - 1 2
=> - 8,5 < k < 7,5 => điểm M thuộc k = - 8
=> MA – MB = -15 => MB = MA + 15 (1)
+ Trong tam giác vuông AMB ta có:
MB2 = MA2 + AB2 , từ (1) ta có (MA + 15)2 = MA2 + 162 => MA ≈ 1,033 cm .
Đáp án D
+ Bước sóng: λ = v f = 40 20 = 2 c m
+ Vì hai nguồn ngược pha nên điều kiện cực đại cho M là: M A − M B = k + 0 , 5 λ = 2 k + 1
+ Vì M gần A nhất nên M phải thuộc cực đại ngoài cùng về phía A.
+ Số cực đại trên AB: − A B λ − 1 2 < k < A B λ − 1 2
⇒ − 8 , 5 < k < 8 , 5 ⇒ k = − 8
⇒ M A − M B = 2 − 8 + 1 = − 15 ⇒ M B = M A + 15 1
+ Vì Δ A M B vuông tại A nên: M A 2 + A B 2 = M B 2 2
+ Thay (1) vào (2) ta có: M A 2 + 16 2 = M A + 15 2 ⇒ M A = 1 , 03 c m
Chọn đáp án C
ta có lamda= 4cm. để MA min thì M phải thuộc cực tiểu xa đường trung trực nhất. xét -AB/4-1/2<= K <=
AB/4-1/2 => -4,75<= K <=3,75. => k= -4.
M thuộc cực tiểu nên MA-MB= (2k+1).lamda/2 <=>d1- căn( d1^2 + AB^2}= (2.-4 +1)2 <=>d1= 3,32
Chọn đáp án B
Đặt A B = l = 50 c m , bước sóng λ = v . T = 8 c m .
Khi hai nguồn dao động cùng pha,số vân có biên độ dao động cực đại bằng số giá trị của k thoả mãn
− l λ < k < l λ ⇒ − 6,25 < k < 6,25 ⇒ k = 0, ± 1,...., ± 6.
→ Có 13 vân cực đại, vân chính giữa là vân cực đại bậc k = 0, vân cực đại gần B nhất là vân bậc 6. Điểm M trên đường Bx vuông góc với AB sóng có biên độ cực đại và M gần B nhất thì M là giao điểm của Bx và vân cực đại bậc 6, MA – MB = k.λ= 6.8 = 48 cm.
⇒MA = MB + 48 (cm). MB⊥AB
⇒ M A 2 = A B 2 + M B 2 ⇔ ( M B + 48 ) 2 = A B 2 + M B 2 ⇔ M B 2 + 96 M B + 48 2 = 50 2 + M B 2 ⇔ M B = 50 2 − 48 2 96 = 2,04 c m
Đáp án B
Đặt AB =l = 50 cm, bước sóng λ = v.T = 8cm.
Khi hai nguồn dao động cùng pha,số vân có biên độ dao động cực đại bằng số giá trị của k thoả mãn
- 1 λ < k < 1 λ ⇒ - 6 , 25 < k < 6 , 25 ⇒ k = 0 , ± 1 , . . . , ± 6
→ Có 13 vân cực đại, vân chính giữa là vân cực đại bậc k = 0, vân cực đại gần B nhất là vân bậc 6. Điểm M trên đường Bx vuông góc với AB sóng có biên độ cực đại và M gần B nhất thì M là giao điểm của Bx và vân cực đại bậc 6, MA – MB = k.λ= 6.8 = 48 cm.
⇒ MA = MB + 48 (cm). MB⊥AB
⇒ MA 2 = AB 2 + MB 2 ⇔ ( MB + 48 ) 2 = AB 2 + MB 2 ⇔ MB 2 + 96 MB + 48 2 = 50 2 + MB 2 ⇔ MB = 50 2 - 48 2 96 = 2 , 04 cm
Đáp án D
+ Bước sóng của sóng λ = 2 πv ω = 4 cm .
Số cực đại trên đoạn thẳng nối hai nguồn:
- AB λ ≤ k ≤ A B λ ⇔ - 2 , 5 ≤ k ≤ 2 , 5 .
+ Để trên đoạn AM không còn cực đại nào khác thì M là cực đại ứng với k = 2.
+ Ta có
BM - AM = 8 BM 2 - AM 2 = AB 2 ⇒ ( 8 + AM 2 ) - AM 2 = 10 2 ⇒ AM = 2 , 25 cm .
Số điểm cực đại trên đoạn AG là số giá trị k thỏa mãn \(-AG \leq (k+\frac{\triangle \phi}{2\pi})\lambda \leq AG \Rightarrow -\frac{AB}{4}.3=10.875cm \leq (k+0.5)\lambda \leq 10.875\\ \Rightarrow -5.94 \leq k \leq 4.94 \Rightarrow k = -5,-4,\ldots,0,1,\ldots,4\)
có 10 điểm dao động cực đại trên đoạn AG
\(\lambda = v/f = 80/20 = 4cm.\)
\(\triangle \varphi = \pi-0=\pi.\)
Nhận xét: \(BM-AM=(BI+IM)-(AI-IM)=2MI\)
\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{BM-AM}{\lambda}-\frac{\triangle\varphi}{2\pi})|\\=|2a\cos\pi(\frac{2MI}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{6}{4}-\frac{\pi}{2\pi})| = |-2a|=2a=10 mm.\)
Đáp án D
+ Bước sóng:
+ Vì hai nguồn ngược pha và điểm M thuộc cực đại nên: MA – MB = (k + 0,5)λ
+ Điểm M gần A nhất khi M thuộc đường cực đại gần A nhất.
+ Số cực đại trên AB:
=> - 8,5 < k < 7,5 => điểm M thuộc k = - 8
=> MA – MB = -15 => MB = MA + 15 (1)
+ Trong tam giác vuông AMB ta có:
MB2 = MA2 + AB2,
từ (1) ta có (MA + 15)2 = MA2 + 162
=> MA ≈ 1,033 cm.