K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn D

13 tháng 11 2018

a.Ta có: OD=OB+BD
OC=OA+AC
mà OA=OB; AC=BD
=>OD=OC
Xét 2 TG ODA và OCB;ta có:
OA-OB(gt); O:góc chung; OD=OC(cmt)
=>TG ODA= TG OCB(c.g.c)
=>AD=BC(2 cạnh tương ứng)
b. TG ODA=TG OCB=> góc C=góc D(2 góc tương ứng)
=>OAD=OBC(2 góc tương ứng)
Ta có: OAD+EAC=180o(kề bù) (1)
OBC+EBD=180o(kề bù) (2)
Từ (1) và (2)=> OAD+EAC=OBC+EBD=180o
mà OAD=OBC(cmt)=>EAC=EBD
Xét 2 TG EAC và EBD; ta có:
AC=BD(gt); C=D(cmt); EAC=EBD(cmt)
=>TG EAC=TG EBD (g.c.g)

27 tháng 4 2018

Vì M thuộc đường trung trực của đoạn thẳng AB nên MA = MB.

Vì N thuộc đường trung trực của đoạn thẳng AB nên NA = NB.

+) Xét ∆AMN và ∆BMN có:

MA = MB ( chứng minh trên)

NA = NB (chứng minh trên)

MN chung

Suy ra: ∆AMN = ∆BMN (c.c.c) nên các khẳng định (A), (B), (C) sai, (D) đúng.

\(\frac{a+c+m}{a+b+c+d+m+n}<\frac{a+c+m}{a+a+c+c+m+m}=\frac{a+c+m}{2\left(a+c+m\right)}=\frac{1}{2}\)

\(\Rightarrowđpcm\)

5 tháng 3 2018

Câu 3 :

A I B C H K

Xét \(\Delta AIB,\Delta AIC\) có :

\(BI=CI\) (I là trung điểm của BC)

\(\widehat{AIB}=\widehat{AIC}\) (tính chất đường trung trực)

\(AI:Chung\)

=> \(\Delta AIB=\Delta AIC\left(c.g.c\right)\)

Xét \(\Delta HBI,\Delta KCI\) có :

\(\widehat{HBI}=\widehat{KCI}\) (do \(\Delta AIB=\Delta AIC\))

\(BI=CI\) (I là trung điểm của BC)

\(\widehat{BHI}=\widehat{CKI}\left(=90^o\right)\)

=> \(\Delta HBI=\Delta KCI\) (cạnh huyền - góc nhọn)

=> IH = IK (2 cạnh tương ứng)

=> \(\Delta IHK\) cân tại I

Ta có : \(\left\{{}\begin{matrix}\widehat{BHI}+\widehat{IHK}+\widehat{AHK}=180^o\\\widehat{CKI}+\widehat{IKH}+\widehat{AKH}=180^o\end{matrix}\right.\left(Kềbù\right)\)

Lại có : \(\left\{{}\begin{matrix}\widehat{BHI}=\widehat{CKI}\left(=90^o\right)\\\widehat{IHK}=\widehat{IKH}\left(\text{Tam giác IHK cân tại I}\right)\end{matrix}\right.\)

Suy ra : \(180^o-\left(\widehat{BHI}+\widehat{IHK}\right)=180^o-\left(\widehat{CKI}+\widehat{IKH}\right)\)

\(\Leftrightarrow\widehat{AHK}=\widehat{AKH}\)

=> \(\Delta AHK\) cân tại A

Ta có : \(\widehat{AHK}=\widehat{AKH}=\dfrac{180^{^O}-\widehat{A}}{2}\left(1\right)\)

Xét \(\Delta ABC\) cân tại A có :

\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{AHK}=\widehat{ABC}\left(=\dfrac{180^o-\widehat{A}}{2}\right)\)

Mà thấy : 2 góc này ở vị trí đồng vị

=> \(\text{HK // BC }\)

=> đpcm.

13 tháng 3 2020

Xét ΔAIB,ΔAIC có

:BI=CI (I là trung điểm của BC)

ˆAIB=ˆAIC (tính chất đường trung trực)

AI:Chung

=> ΔAIB=ΔAIC(c.g.c)

Xét ΔHBI,ΔKCI có :

ˆHBI=ˆKCI (do ΔAIB=ΔAIC)

BI=CI (I là trung điểm của BC)

ˆBHI=ˆCKI(=90o)

=> ΔHBI=ΔKCI (cạnh huyền - góc nhọn)

=> IH = IK (2 cạnh tương ứng)

=> ΔIHK cân tại I

Ta có : {ˆBHI+ˆIHK+ˆAHK=180oˆCKI+ˆIKH+ˆAKH=180o(Kềbù)

Lại có : {ˆBHI=ˆCKI(=90o)ˆIHK=ˆIKH(Tam giác IHK cân tại I)

Suy ra : 180o−(ˆBHI+ˆIHK)=180o−(ˆCKI+ˆIKH)⇔ˆAHK=ˆAKH

=> ΔAHK cân tại A

Ta có : ˆAHK=ˆAKH=180O−ˆA2(1)

Xét ΔABC cân tại A có :ˆABC=ˆACB=180o−ˆA2(2)Từ (1) và (2) => ˆAHK=ˆABC(=180o−ˆA2) Mà thấy : 2 góc này ở vị trí đồng vị

=> HK // BC

15 tháng 12 2016

Ta có hình vẽ:

B C A D E N M

a/ Xét tam giác ABC và tam giác AED có:

BA = AE (GT)

góc BAC = góc DAE (đối đỉnh)

CA = AD (GT)

=> tam giác ABC = tam giác AED (c.g.c)

b/ Ta có: tam giác ABC = tam giác AED (câu a)

=> góc DEA = góc ABC (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> BC // DE (đpcm)

c/ Ta có: BC // DE (đã chứng minh trên)

=> góc DNA = góc AMC so le trong

=> đường MN qua A

hay NA trùng AM

hay N,A,M thẳng hàng