Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A = 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 + 2 8 + 2 9 + 2 10 + 2 11 + 2 12
= ( 2 + 2 2 ) + ( 2 3 + 2 4 ) + ( 2 5 + 2 6 ) + ( 2 7 + 2 8 ) + ( 2 9 + 2 10 ) + ( 2 11 + 2 12 )
= 2 ( 1 + 2 ) + 2 3 ( 1 + 2 ) + 2 5 ( 1 + 2 ) + 2 7 (1 + 2 ) + 2 9 (1 + 2 ) + 2 11 ( 1 + 2 )
= 2 .3 + 2 3 .3 + 2 5 .3 + 2 7 .3 + 2 9 .3 + 2 11 .3
= ( 2 + 2 3 + 2 5 + 2 7 + 2 9 + 2 11 ).3 chia hết cho 3
Ta lại có :
A = 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 + 2 8 + 2 9 + 2 10 + 2 11 + 2 12
= ( 2 + 2 2 + 2 3 ) + ( 2 4 + 2 5 + 2 6 ) + ( 2 7 + 2 8 + 2 9 ) + ( 2 10 + 2 11 + 2 12 )
= 2 ( 1 + 2 + 2 2 ) + 2 4 ( 1 + 2 + 2 2 ) + 2 7 (1 + 2 + 2 2 ) + 2 10 ( 1 + 2 + 2 2)
= 2 .7 + 2 4 .7 + 2 7 .7 + 2 10 .7
= ( 2 + 2 4 + 2 7 + 2 10 ).7 chia hết cho 7
Ta lại có :
A = 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 + 2 8 + 2 9 + 2 10 + 2 11 + 2 12
= ( 2 + 2 2 + 2 3 + 2 4 ) + ( 2 5 + 2 6 + 2 7 + 2 8 ) + ( 2 9 + 2 10 + 2 11 + 2 12 )
= 2 ( 1 + 2 + 2 2 + 2 3 ) + 2 5 ( 1 + 2 + 2 2 + 2 3) + 2 9 (1 + 2 + 2 2 + 2 3)
= 2 .15 + 2 5 .15 + 2 9 .15
= ( 2 + 2 5 + 2 9 ). 15 chia hết cho 5 ( vì 15 chia hết cho 5 )
\(8-12x+6x^2-x^3\)
\(=\left(2-x\right)^3\)
\(125x^3-75x^2+15x-1\)
\(=\left(5x-1\right)^3\)
\(x^2-xz-9y^2+3yz\)
\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-z\right)\)
\(x^3-x^2-5x+125\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
\(x^3+2x^2-6x-27\)
\(=x^3+5x^2+9x-3x^2-15x-27\)
\(=x\left(x^2+5x+9\right)-3\left(x^2+5x+9\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
\(12x^3+4x^2-27x-9\)
\(=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(4x^2-9\right)\)
\(=\left(3x+1\right)\left(2x-3\right)\left(2x+3\right)\)
\(4x^4+4x^3-x^2-x\)
\(=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=x\left(x+1\right)\left(4x^2-1\right)\)
\(=x\left(x+1\right)\left(2x-1\right)\left(2x+1\right)\)
a) \(A=2^1+2^2+2^3+...+2^{12}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{11}+2^{12}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{11}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{11}\right)⋮3\)
b) \(A=2^1+2^2+2^3+...+2^{12}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^9+2^{10}+2^{11}+2^{12}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^9\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+2^9\right)⋮5\)
c) \(A=2^1+2^2+2^3+...+2^{12}\)
\(=\left(2^1+2^2+2^3\right)+...+\left(2^{10}+2^{11}+2^{12}\right)\)
\(=2\left(1+2+2^2\right)+...+2^{10}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{10}\right)⋮7\)
a) 1 + 5 + 6 = 12; 2 + 3 + 7 = 12. Vậy hai biểu thức này bằng nhau
A=1+4+42+43+...+42014
A=(1+4+42)+(43+45+46)+...+(42012+42013+22014)
A=21.(1+43+...+42012)
B=1+7+72+...+7101
B=(1+7)+(72+73)+...+(7100+7101)
B=8(1+72+...+7100)
\(S=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{11}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{11}\right)⋮3\)
\(S=2\left(1+2+2^2\right)+...+2^{10}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{10}\right)⋮7\)
\(S=3\left(2+2^3+...+2^{11}\right)=3\cdot2\left(1+2^2+...+2^{10}\right)=6\left(1+2^2+...+2^{10}\right)⋮6\)
a: \(S=\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)
\(=4\left(1+3^2+3^4+...+3^8\right)⋮4\)
b: \(S=\left(1+2\right)+2^2\left(1+2\right)+...+2^8\left(1+2\right)\)
\(=3\left(1+2^2+...+2^8\right)⋮3\)
2\(^1\)=2
4\(^2\)= 16
8 = 8
10\(^3\)= 1000
3 = 3
5\(^2\)= 25
7\(^2\)= 49
9\(^2\)= 81
xin thank
học tốt
Ta có:
A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
= (2 + 22) + (23 + 24) + (25 + 26) + (27 + 28) + (29 + 210)
= 2 . (1 + 2) + 23 . (1 + 2) + 25 . (1 + 2) + 27 . (1 + 2) + 29 . (1 + 2)
= 2 . 3 + 23 . 3 + 25 . 3 + 27 . 3 + 29 . 3
= 3 . (2 + 23 + 25 + 27 + 29)
Vậy A ⋮ 3