K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2016

M=100

Xét tử N

92-(1/9)-(2/10)-(3/11)- ... -(90/98)-(91/99)-(92/100)

=(1+1+1+...+1)-(1/9)-(2/10)-(3/11)- ... -(90/98)-(91/99)-(92/100)

=1-(1/9)+1-(2/10)+1-(3/11)+......+1-(90/98)+1-(91/99)+1-(92/100)

=(8/9)+(8/10)+(8/11)+ ...+ (8/98)+(8/99)+(8/100)

=8.[(1/9)+(1/10)+(1/11)+...+(1/98)+(1/99)+(1/100)]

=40[(1/45)+(1/50)+(1/55)+...+(1/495)+(1/500)]

=>N=40

=>M/N=5/2

8 tháng 9 2015

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+....+\frac{99.100}{100!}-\frac{1}{100!}\)

\(\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{99!}\right)\)

\(1+1-\frac{1}{99!}\)

\(2-\frac{1}{99!}<1\)

=> \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}<2\)(Đpcm)

28 tháng 6 2020

a/ Ta có :

\(10A=\frac{10\left(10^{50}+1\right)}{10^{51}+1}=\frac{10^{51}+10}{10^{51}+1}=\frac{10^{51}+1}{10^{51}+1}+\frac{9}{10^{51}+1}=1+\frac{9}{10^{51}+1}\)

\(10B=\frac{10\left(10^{51}+1\right)}{10^{52}+1}=\frac{10^{52}+10}{10^{52}+1}=\frac{10^{52}+1}{10^{52}+1}+\frac{9}{10^{52}+1}=1+\frac{9}{10^{52}+1}\)

\(\frac{9}{10^{51}+1}>\frac{9}{10^{52}+1}\Leftrightarrow10A>10B\Leftrightarrow A>B\)

Vậy...

b/ Mình sửa lại một chút nhé :>

\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-3}{97}-3=0\)

\(\Leftrightarrow\left(\frac{x-1}{99}-1\right)+\left(\frac{x-2}{98}-1\right)+\left(\frac{x-3}{97}-1\right)=0\)

\(\Leftrightarrow\frac{x-100}{99}+\frac{x-100}{98}+\frac{x-100}{97}=0\)

\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\right)=0\)

\(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\ne0\)

\(\Leftrightarrow x-100=0\)

\(\Leftrightarrow x=100\)

Vậy...

c/ Đặt :

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{1999.2000}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{1999}-\frac{1}{2000}\)

\(=1-\frac{1}{2000}\)

\(=\frac{1999}{2000}\)

Vậy..

5 tháng 9 2015

 

\(\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(\left(2+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(2-\frac{1}{99!}-\frac{1}{100!}<2\)

=> \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}<2\)(Đpcm)

30 tháng 6 2018

tớ là một youtuber link đây https://www.youtube.com/channel/UCRoT6fvb0VTS8S1EFsH0qGg?sub_confimation=1 nhớ đăng ký, , chia sẻ ủng hộ giúp mình nhé

21 tháng 6 2016

Ta thấy mỗi hạng tử của tổng đều có dạng:  \(\frac{\left(n-1\right)n-1}{n!}=\frac{\left(n-1\right)n}{n!}-\frac{1}{n!}=\frac{1}{\left(n-2\right)!}-\frac{1}{n!}\)

Như vậy VT = \(\frac{1}{0!}-\frac{1}{2!}+\frac{1}{1!}-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+\frac{1}{3!}-\frac{1}{5!}+...+\frac{1}{98!}-\frac{1}{100!}\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

22 tháng 6 2016

LA 0 DO CON NGU DU

5 tháng 9 2015

ta có:

1.2-1/2!+2.3-1/3!+3.4-1/4!+...+99.100-1/100!

=1.2/2!-1/2!+2.3/3!-13!+...+99.100-1/100!

=(1.2/2!+2.3/3!+3.4-4!+...+99.100/100!)-(1/2!+1/3!+...+1/100!)

=(1+1+1/2+...+1/98!)_(1/2!+1/3!+...+1/100!)

=2-1/99!-1/100!<2

12 tháng 9 2017

Ta xét :

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(=1+1-\frac{1}{99}-\frac{1}{100}\)

\(=2-\frac{1}{99}-\frac{1}{100}< 2\)

\(\RightarrowĐPCM\)

21 tháng 9 2015

nhìn chóng cả mặt quá

16 tháng 3 2017

Ta có: \(\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}...\dfrac{10^2}{10.11}\)

\(=\dfrac{2.2.3.3...10.10}{2.2.3.3.4...10.11}\)

\(=\dfrac{1}{11}\)

Vậy tích trên có giá trị \(=11.\)