K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 11 2018

1.a/ \(\left\{{}\begin{matrix}3^{x+1}>0\\5^{x^2}>0\end{matrix}\right.\) \(\forall x\) \(\Rightarrow\) pt vô nghiệm

b/ Mình làm câu b, câu c bạn tự làm tương tự, 3 câu này cùng dạng

Lấy ln hai vế:

\(ln\left(3^{x^2-2}.4^{\dfrac{2x-3}{x}}\right)=ln18\Leftrightarrow ln3^{x^2-2}+ln4^{\dfrac{2x-3}{x}}-ln18=0\)

\(\Leftrightarrow\left(x^2-2\right)ln3+\dfrac{2x-3}{x}2ln2-ln\left(2.3^2\right)=0\)

\(\Leftrightarrow x^3ln3-2x.ln3+4x.ln2-6ln2-x.ln2-2x.ln3=0\)

\(\Leftrightarrow x^3ln3-4x.ln3+3x.ln2-6ln2=0\)

\(\Leftrightarrow x.ln3\left(x^2-4\right)+3ln2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2ln3+2x.ln3+3ln2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\Rightarrow x=2\\x^2ln3+2x.ln3+3ln2=0\left(1\right)\end{matrix}\right.\)

Xét (1): \(\left(x^2+2x\right)ln3=-3ln2\Leftrightarrow x^2+2x=\dfrac{-3ln2}{ln3}=-3log_32\)

\(\Leftrightarrow\left(x+1\right)^2=1-3log_32=log_33-log_38=log_3\dfrac{3}{8}< 0\)

\(\Rightarrow\left(1\right)\) vô nghiệm

\(\Rightarrow\) pt có nghiệm duy nhất \(x=2\)

2/ Pt đã cho tương đương:

\(2017^{sin^2x}-2017^{cos^2x}=cos^2x-sin^2x\)

\(\Leftrightarrow2017^{sin^2x}+sin^2x=2017^{cos^2x}+cos^2x\)

Xét hàm \(f\left(t\right)=2017^t+t\) (\(0\le t\le1\))

\(\Rightarrow f'\left(t\right)=2017^t.ln2017+1>0\) \(\forall t\) \(\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)

\(\Rightarrow sin^2x=cos^2x\Rightarrow cos^2x-sin^2x=0\Rightarrow cos2x=0\)

\(\Rightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Thế k=0; k=1 ta được 2 nghiệm thuộc đoạn đã cho là \(x=\dfrac{\pi}{4};x=\dfrac{3\pi}{4}\)

\(\Rightarrow\) tổng nghiệm là \(T=\dfrac{\pi}{4}+\dfrac{3\pi}{4}=\pi\)

NV
11 tháng 6 2019

Câu 1:

\(\Leftrightarrow x^2-4x+5+\sqrt{x^2-4x+5}-5=m\)

Đặt \(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}=a\ge1\)

\(\Rightarrow a^2+a-5=m\) (1)

Xét phương trình: \(x^2-4x+5=a^2\Leftrightarrow x^2-4x+5-a^2=0\)

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=5-a^2\end{matrix}\right.\)

\(\Rightarrow\) Nếu \(5-a^2>0\Rightarrow1\le a< \sqrt{5}\) thì pt có 2 nghiệm dương

Nếu \(5-a^2\le0\) \(\Leftrightarrow a\ge\sqrt{5}\) thì pt có 1 nghiệm dương

Vậy để pt đã cho có đúng 2 nghiệm dương thì: (1) có đúng 1 nghiệm thỏa mãn \(1\le a< \sqrt{5}\) hoặc có 2 nghiệm pb \(a_1>a_2\ge\sqrt{5}\)

Xét \(f\left(a\right)=a^2+a-5\) với \(a\ge1\)

\(f'\left(a\right)=0\Rightarrow a=-\frac{1}{2}< 1\Rightarrow f\left(a\right)\) đồng biến \(\forall a\ge1\) \(\Rightarrow y=m\) chỉ có thể cắt \(y=f\left(a\right)\) tại nhiều nhất 1 điểm có hoành độ \(a\ge1\)

\(f\left(1\right)=-3\) ; \(f\left(\sqrt{5}\right)=\sqrt{5}\)

\(\Rightarrow\) Để pt có 2 nghiệm pb đều dương thì \(-3\le m< \sqrt{5}\)

NV
11 tháng 6 2019

Câu 2:

\(x^2-3x+2\le0\Leftrightarrow1\le x\le2\) (1)

Ta có: \(mx^2+\left(m+1\right)x+m+1\ge0\)

\(\Leftrightarrow m\left(x^2+x+1\right)\ge-x-1\)

\(\Leftrightarrow m\ge\frac{-x-1}{x^2+x+1}=f\left(x\right)\) (2)

Để mọi nghiệm của (1) là nghiệm của (2) \(\Leftrightarrow\left(2\right)\) đúng với mọi \(x\in\left[1;2\right]\)

\(\Rightarrow m\ge\max\limits_{\left[1;2\right]}f\left(x\right)\)

\(f'\left(x\right)=\frac{-\left(x^2+x+1\right)+\left(2x+1\right)\left(x+1\right)}{\left(x^2+x+1\right)^2}=\frac{x^2+2x}{\left(x^2+x+1\right)^2}>0\) \(\forall x\in\left[1;2\right]\)

\(\Rightarrow f\left(x\right)\) đồng biến \(\Rightarrow\max\limits_{\left[1;2\right]}f\left(x\right)=f\left(2\right)=-\frac{3}{7}\)

\(\Rightarrow m\ge-\frac{3}{7}\)

AH
Akai Haruma
Giáo viên
16 tháng 10 2017

Bài 1:

Đặt \(\left(\frac{3}{2}\right)^x=a\) \((a>0)\)

PT tương đương với:

\(\left(\frac{9}{4}\right)^x-2.\left(\frac{3}{2}\right)^x+m^2=0\)

\(\Leftrightarrow a^2-2a+m^2=0\) (1)

-Trước tiên, để pt đầu tiên có hai nghiệm phân biệt thì (1) cũng phải có hai nghiệm phân biệt \(\rightarrow \) \(\Delta'=1-m^2>0\Leftrightarrow -1< m< 1\)

Áp dụng hệ thức Viete với \(a_1,a_2\) là nghiệm của (1) \(\left\{\begin{matrix} a_1+a_2=2\\ a_1a_2=m^2\end{matrix}\right.\)

-Vì \(a\) luôn dương nên \(\left\{\begin{matrix} a_1+a_2>0\\ a_1a_2>0\end{matrix}\right.\Leftrightarrow m^2>0 \Leftrightarrow m\neq 0\)

-Xét đk cuối cùng, để pt đầu tiên có hai nghiệm trái dấu, tức \(x<0\) hoặc $x>0$ thì \(a<1\) hoặc \(a>1\), hay \((a_1-1)(a_2-1)< 0\)

\(\Leftrightarrow a_1a_2-(a_1+a_2)+1< 0\Leftrightarrow m^2<1\Leftrightarrow -1< m< 1\)

Vậy \(-1< m< 1; m\neq 0\)

AH
Akai Haruma
Giáo viên
16 tháng 10 2017

Bài 2:

Đặt \(2^x=a\Rightarrow \) \(4^x-2m.2^x+2m=0\) tương đương với:
\(a^2-2ma+2m=0\) (1)

Để pt đầu tiên có hai nghiệm phân biệt thì (1) cũng phải có hai nghiệm phân biệt

\(\Rightarrow \Delta'=m^2-2m>0\Leftrightarrow m< 0\) hoặc $m>2$

Áp dugnj hệ thức viete với $a_1,a_2$ là hai nghiệm của phương trình:

\(a_1a_2=2m\Leftrightarrow 2^{x_1}.2^{x_2}=2m\Leftrightarrow 2^{x_1+x_2}=2m\Leftrightarrow 8=2m\rightarrow m=4\)

(thỏa mãn)

Vậy \(m=4\)

NV
6 tháng 8 2020

1.

\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

\(y\left(0\right)=5;\) \(y\left(1\right)=3;\) \(y\left(2\right)=7\)

\(\Rightarrow y_{min}=3\)

2.

\(y'=4x^3-8x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\sqrt{2}\end{matrix}\right.\)

\(f\left(-2\right)=-3\) ; \(y\left(0\right)=-3\) ; \(y\left(-\sqrt{2}\right)=-7\) ; \(y\left(1\right)=-6\)

\(\Rightarrow y_{max}=-3\)

3.

\(y'=\frac{\left(2x+3\right)\left(x-1\right)-x^2-3x}{\left(x-1\right)^2}=\frac{x^2-2x-3}{\left(x-1\right)^2}=0\Rightarrow x=-1\)

\(y_{max}=y\left(-1\right)=1\)

4.

\(y'=\frac{2\left(x^2+2\right)-2x\left(2x+1\right)}{\left(x^2+2\right)^2}=\frac{-2x^2-2x+4}{\left(x^2+2\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

\(y\left(1\right)=1\) ; \(y\left(-2\right)=-\frac{1}{2}\Rightarrow y_{min}+y_{max}=-\frac{1}{2}+1=\frac{1}{2}\)

1 số giao điểm của đồ thị hàm số y=\(x^3+3x^2+1\) và trục hoành là A. 3 B. 0 C. 2 D. 1 2 tập nghiệm của bất phương trình \(4^x-5.2^x+4\) >0 là 3 trong ko gian, cho hình chữ nhật ABCD, AB=2a và AC=3a. Khi quay hình chữ nhật ABCD quanh cạnh AB thì đường gấp khúc BCDA tạo thành một hình trụ. Diện tích xung quanh của hình trụ đó bằng 4 Hinh phẳng giới hạn bởi các đường...
Đọc tiếp

1 số giao điểm của đồ thị hàm số y=\(x^3+3x^2+1\) và trục hoành là

A. 3 B. 0 C. 2 D. 1

2 tập nghiệm của bất phương trình \(4^x-5.2^x+4\) >0 là

3 trong ko gian, cho hình chữ nhật ABCD, AB=2a và AC=3a. Khi quay hình chữ nhật ABCD quanh cạnh AB thì đường gấp khúc BCDA tạo thành một hình trụ. Diện tích xung quanh của hình trụ đó bằng

4 Hinh phẳng giới hạn bởi các đường x=-1,x=2,y=0, y=x^2-2x có diện tích được tính theo công thức là

5 Gọi \(z_0\) là nghiệm phức có phần ảo dương của phương trình \(z^2-2z+10=0\) . Mô đun của phức phức w=i\(z_0\) bằng

6 trong khong gian oxyz, cho điểm A(6;-3;9) có hình chiếu vuông góc trên các trục Ox, Oy,Oz ka2 B,C,D.Gọi G là trọng tâm tam giác BCD . Phương trình của đường thẳng OG là

7 cho cấp sốc nhân (\(u_n\) ) vói \(u_1=\frac{1}{2}\) và công bội q=2. Gía trị của u\(u_{10}\) bằng

A \(2^8\) B \(2^9\) C \(\frac{1}{2^{10}}\) D \(\frac{37}{2}\)

8 nghiệm của pt \(3^{2x^2+1}\) =\(27^x\)

9 thể tích khối lập phương cạnh bằng 5

10 tập xác định của hàm số y=\(5^x\)

A \(R\backslash\left\{0\right\}\) B\(\left(0,+\infty\right)\) C \(\left(-\infty;+\infty\right)\) D[\(0;+\infty\))

11 Diện tích của một mặt cầu bằng \(16\pi\) (\(cm^2\) ) . Bán kính mặt cầu đó là

12 Cho a là số thực dương bất kí, giá trị nào dưới đây có cùng giá trị với log(10a^3)?

A 3loga B 10log\(a^3\) C 1+3loga D 3log(10a)

13 Diện tích xung quanh của hình trụ có diện tích một đấy là S và độ dài đường sinh l bằng ?

14 tiệm cận đúng đồ thị hàm số \(y=\frac{x-2}{x+1}\)

15 bất phương trình \(log_2\left(x^2+2x+1\right)>1\) có tập nghiệm là

16 cho I \(\int_0^2f\left(x\right)dx=3\) . Khi đó J=\(\int_0^2\left[4f\left(x\right)-2x\right]dx\) bằng

17 số phức liên hợp của số phức z=(1-3i).(2+2i) là

5
NV
5 tháng 6 2020

15.

ĐKXĐ: \(x^2+2x+1>0\Rightarrow x\ne-1\)

\(\Leftrightarrow log_2\left(x^2+2x+1\right)>log_22\)

\(\Leftrightarrow x^2+2x+1>2\)

\(\Leftrightarrow x^2+2x-1>0\Rightarrow\left[{}\begin{matrix}x< -1-\sqrt{2}\\x>-1+\sqrt{2}\end{matrix}\right.\)

16.

\(J=4\int\limits^2_0f\left(x\right)dx-\int\limits^2_02xdx=4.3-x^2|^2_0=8\)

17.

\(z=2+2i-6i-6i^2=8-4i\)

\(\Rightarrow\overline{z}=8+4i\)

NV
5 tháng 6 2020

11.

\(S=4\pi R^2\Rightarrow R=\sqrt{\frac{S}{4\pi}}=2\left(cm\right)\)

12.

\(log\left(10a^3\right)=log10+loga^3=1+3loga\)

13.

\(S=\pi R^2\Rightarrow R=\sqrt{\frac{S}{\pi}}\)

\(\Rightarrow S_{xq}=2\pi R.l=2\pi\sqrt{\frac{S}{\pi}}.l=2l.\sqrt{\pi S}\)

14.

\(\lim\limits_{x\rightarrow-1}\frac{x-2}{x+1}=-\infty\Rightarrow x=-1\) là tiệm cận đứng

NV
21 tháng 3 2019

\(\left|z_0\right|=2\Rightarrow z_0=2cosx+2i.sinx\)

\(\Rightarrow z_0^2+3z_0+a^2-2a=0\)

\(\Leftrightarrow4cos2x+4i.sin2x+6cosx+6i.sinx+a^2-2a=0\)

\(\Leftrightarrow\left(4cos2x+6cosx+a^2-2a\right)+i.\left(4sin2x+6sinx\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}4sin2x+6sinx=0\left(1\right)\\4cos2x+6cosx+a^2-2a=0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2sinx\left(4cosx+3\right)=0\Rightarrow\left[{}\begin{matrix}sinx=0\\cosx=\frac{-3}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=-1\\cosx=\frac{-3}{4}\end{matrix}\right.\)

- Với \(cosx=1\)

\(\left(2\right)\Leftrightarrow8cos^2x-4+6cosx+a^2-2a=0\)

\(\Leftrightarrow a^2-2a+10=0\) (ko có nghiệmt thực)

- Với \(cosx=-1\)

\(\left(2\right)\Leftrightarrow a^2-2a-2=0\Rightarrow\) theo Viet \(a_1+a_2=2\)

- Với \(cosx=\frac{-3}{4}\)

\(\left(2\right)\Leftrightarrow a^2-2a-4=0\Rightarrow a_3+a_4=2\)

\(\Rightarrow\sum a=2+2=4\)

AH
Akai Haruma
Giáo viên
18 tháng 2 2017

Lời giải:

Định lý: điều kiện đủ để phương trình \(f(x)=0\) có ít nhất một nghiệm trên khoảng \((a;b)\)\(f(x)\) liên tục trên \([a,b]\)\(f(a)f(b)<0\).

Bây giờ xét \(\left\{\begin{matrix} f(x)=x^3+2x^2+3x+4\\ g(x)=x^3-8x^2+23x-26\end{matrix}\right.\)

Ta thấy hai hàm trên liên tục trên \(R\). Hơn nữa:\(\left\{\begin{matrix} f(-2)f(0)<0\\ g(3)g(4)<0\end{matrix}\right.\)

Do đó \(f(x) =0\) có ít nhất một nghiệm \(x_1\in (-2,0)\)\(g(x)=0\) có ít nhất một nghiệm \(x_2\in (3,4)\)

Lại có \(f'(x)=3x^2+4x+3>0\forall x\in\mathbb{R}\)\(g'(x)=3x^2-16x+23>0\forall x\in\mathbb{R}\) nên hai hàm luôn đồng biến .

Do đó, cả hai PT đều có duy nhất một nghiệm.

Vì nó chỉ có duy nhất một nghiệm nên có thể tính trực tiếp (hoặc sử dụng phương pháp Cardano ta suy ra tổng hai nghiệm của chúng là \(x_1+x_2=2\)

21 tháng 2 2017

lớp mấy vậy bạn

5 tháng 7 2017

Tính \(I=\int_0^{\dfrac{\pi}{2}}\dfrac{cos^{2017}x}{sin^{2017}x+cos^{2017}}dx\left(1\right)\)

Đặt \(t=cosx\Rightarrow sinx=\sqrt{1-cos^2x}\)

\(\Rightarrow dt=-sinx.dx\)

\(\Rightarrow I=\int_0^1\dfrac{t^{2017}.}{\sqrt{1-t^2}.\left(\left(\sqrt{1-t^2}\right)^{2017}+t^{2017}\right)}dt\)

Đặt: \(t=siny\Rightarrow\sqrt{1-t^2}=cosy\)

\(\Rightarrow dt=cosy.dy\)

\(\Rightarrow I=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}y.cosy}{cosy\left(cos^{2017}y+sin^{2017}y\right)}dy=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}y}{\left(cos^{2017}y+sin^{2017}y\right)}\)

\(\Rightarrow I=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}x}{\left(cos^{2017}x+sin^{2017}x\right)}\left(2\right)\)

Cộng (1) và (2) ta được

\(2I=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}x+cos^{2017}x}{sin^{2017}x+cos^{2017}x}dx=\int_0^{\dfrac{\pi}{2}}1dx\)

\(=x|^{\dfrac{\pi}{2}}_0=\dfrac{\pi}{2}\)

\(\Rightarrow I=\dfrac{\pi}{4}\)

Thế lại bài toán ta được

\(\dfrac{\pi}{4}+t^2-6t+9-\dfrac{\pi}{4}=0\)

\(\Leftrightarrow t^2-6t+9=0\)

\(\Leftrightarrow t=3\)

Chọn đáp án C

mỗi trắc nghiệm thoy mà lm dài ntn s @@

chắc lên đó khó lắm ag