K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2023

`2/[3.5]+2/[5.7]+2/[7.9]+....+2/[19.21]`

`=1/3-1/5+1/5-1/7+1/7-1/9+....+1/19-1/21`

`=1/3-1/21`

`=6/21`

Bài 1: 

a: \(=\dfrac{-1}{8}+1-\dfrac{9}{4}-1\)

\(=\dfrac{-1}{8}-\dfrac{18}{8}=\dfrac{-19}{8}\)

b: \(=4\cdot1-2\cdot\dfrac{1}{4}+3\cdot\dfrac{-1}{2}+1\)

\(=4-\dfrac{1}{2}-\dfrac{3}{2}+1\)

=5-2

=3

1 tháng 5 2017

a,=2*4-1/3*9

=8-3

=5

b,=1/2*4-3*1/9

=2-1/3

=4/3

c,=2*1/4+3*-1/2*2/3+4/9

=1/2-1+4/9

=-1/18

d,=(-1/2*2*1/16)*(2/3*8)

=-1/16*16/3

=-1/3

Chúc bạn học giỏi

26 tháng 6 2017

a, \(\left(\dfrac{3}{7}+\dfrac{1}{2}\right)^2=\left(\dfrac{3}{7}\right)^2+2.\dfrac{3}{7}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\)

\(=\dfrac{9}{49}+\dfrac{3}{7}+\dfrac{1}{4}=\dfrac{169}{196}\)

b, \(\left(\dfrac{3}{4}-\dfrac{5}{6}\right)^2=\left(\dfrac{3}{4}\right)^2-2.\dfrac{3}{4}.\dfrac{5}{6}+\left(\dfrac{5}{6}\right)^2\)

\(=\dfrac{9}{16}-\dfrac{5}{4}+\dfrac{25}{36}=\dfrac{1}{144}\)

c, \(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.5^4.4^4}{5^{10}.4^5}=\dfrac{1}{5^2.4}=\dfrac{1}{100}\)

d, \(\left(\dfrac{-10}{3}\right)^5.\left(\dfrac{-6}{5}\right)^4=\dfrac{\left(-10\right)^5}{3^5}.\dfrac{6^4}{5^4}\)

\(=\dfrac{5^5.\left(-2\right)^5.2^4.3^4}{3^5.5^4}=\dfrac{-\left(5.2^9\right)}{3}=\dfrac{-2560}{3}\)

Chúc bạn học tốt!!!

AH
Akai Haruma
Giáo viên
9 tháng 7 2018

b) \(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2018}\right)\)

\(=\frac{2-1}{2}.\frac{3-1}{3}.\frac{4-1}{4}....\frac{2018-1}{2018}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2017}{2018}=\frac{1.2.3...2017}{2.3.4...2018}=\frac{1}{2018}\)

c) Giữa các biểu thức là dấu nhân hay dấu cộng vậy bạn?

AH
Akai Haruma
Giáo viên
9 tháng 7 2018

d)

\(D=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(D=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

e) \(E=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{97.99}\)

\(2E=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(2E=\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+....+\frac{99-97}{97.99}\)

\(2E=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)

\(\Rightarrow E=\frac{16}{99}\)

25 tháng 3 2017

2) -12:\(\left(-\dfrac{5}{6}\right)^2\)=\(-12:\dfrac{25}{36}=-12\cdot\dfrac{36}{25}=-\dfrac{432}{25}\)

s) \(-\dfrac{1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)=-\dfrac{1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)

= \(-\dfrac{1}{12}-\dfrac{55}{24}=-\dfrac{2}{24}-\dfrac{55}{24}=-\dfrac{57}{24}=-\dfrac{19}{8}\)

t) \(-1,75-\left(-\dfrac{1}{9}-2\dfrac{1}{18}\right)=-1,75-\left(-\dfrac{2}{18}-\dfrac{37}{18}\right)\)

= -1,75-(\(-\dfrac{13}{6}\)) = \(-\dfrac{7}{4}+\dfrac{13}{6}=\dfrac{5}{12}\)

c) \(\left(\sqrt{\dfrac{1}{9}}-0,5\right)^3+\dfrac{-1}{3}=\left(\dfrac{1}{3}-\dfrac{1}{2}\right)^3-\dfrac{1}{3}\)

= \(\left(-\dfrac{1}{6}\right)^3-\dfrac{1}{3}=\dfrac{-1}{216}-\dfrac{1}{3}=-\dfrac{73}{216}\)

d) \(\left(\dfrac{1}{2}-\sqrt{\dfrac{4}{25}}\right)^2-2\dfrac{1}{2}=\left(\dfrac{1}{2}-\dfrac{2}{5}\right)^2-\dfrac{5}{2}\)

= \(\left(\dfrac{1}{10}\right)^2-\dfrac{5}{2}=\dfrac{1}{100}-\dfrac{250}{100}=-\dfrac{249}{100}=-2,49\)

a: \(=\left(\dfrac{-1}{3}:\dfrac{-2}{3}\right)^3+\left(\dfrac{4}{21}\cdot\dfrac{21}{4}\right)^{50}+0.01\)

\(=\left(\dfrac{1}{2}\right)^3+1^{50}+0.01=0.125+1+0.01=1.135\)

b: \(=x:y+\left(\dfrac{2x}{y}\right)^2-11x+12x-12y\)

\(=\dfrac{x}{y}+\dfrac{4x^2}{y^2}+x-12y\)

\(=\dfrac{x^2+4x^2+xy^2-12y^3}{y^2}=\dfrac{5x^2+xy^2-12y^3}{y^2}\)

20 tháng 9 2018

1,\(\dfrac{a}{b}=\dfrac{x}{y}\) khi ay=bx

2,

a,x=\(\dfrac{-1.12}{4}\)

x=\(\dfrac{-12}{4}=-3\)

b,\(\left(\dfrac{1}{3}\right)^{2x-1}=\left(\dfrac{1}{3}\right)^5\)

\(\Rightarrow\)2x-1=5

2x=6

x=6:2=3

c,\(\dfrac{4}{7}\).x=\(\dfrac{1}{5}+\dfrac{2}{3}\)

\(\dfrac{4}{7}.x=\dfrac{3}{15}+\dfrac{10}{15}\)

\(\dfrac{4}{7}.x=\dfrac{13}{15}\)

\(x=\dfrac{13}{15}:\dfrac{4}{7}\)

x=\(\dfrac{13}{15}.\dfrac{7}{4}=\dfrac{91}{60}\)

3,ta có:\(5^{202}=\left(5^2\right)^{101}\)=\(25^{101}\)

2\(^{505}\)=\(\left(2^5\right)^{101}\)=\(32^{101}\)

vì 25<32 nên \(25^{101}< 32^{101}\) hay \(5^{202}< 2^{505}\)

20 tháng 9 2018

1) \(\dfrac{a}{b}=\dfrac{x}{y}\) khi \(a.y=b.x\)

2) \(a,\dfrac{x}{12}=\dfrac{-1}{4}\)

\(\Rightarrow4x=-12\)

\(\Rightarrow x=-\dfrac{12}{4}=-3\)

Vậy x = -3

\(b,\left(\dfrac{1}{3}\right)^{2x-1}=\dfrac{1}{243}\)

\(\left(\dfrac{1}{3}\right)^{2x-1}=\left(\dfrac{1}{3}\right)^5\)

\(\Rightarrow2x-1=5\)

\(\Rightarrow x=\dfrac{5-1}{2}=2\)

Vậy x = 2

\(c,\dfrac{4}{7}x-\dfrac{2}{3}=\dfrac{1}{5}\)

\(\dfrac{4}{7}x=\dfrac{1}{5}+\dfrac{2}{3}\)

\(\dfrac{4}{7}x=\dfrac{13}{15}\)

\(\Rightarrow x=\dfrac{13}{15}:\dfrac{4}{7}=1\dfrac{31}{60}\)

Vậy \(x=1\dfrac{31}{60}\)

3) So sánh \(5^{202}\)\(2^{505}\)

\(5^{202}=\left(5^2\right)^{101}=25^{101}\)

\(2^{505}=\left(2^5\right)^{101}=32^{101}\)

\(\Rightarrow25^{101}< 32^{101}\)

\(\Rightarrow5^{202}< 2^{505}\)

17 tháng 11 2022

Bài 7:

x/1=z/2 nên x/6=z/12

=>x/6=y/9=z/12

=>x/2=y/3=z/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\)

=>x=6; y=9; z=12

12 tháng 12 2018

= ( 10/15-7/15 ) : ( 10/15 - 6/15)2

= 3/15 : (4/15)2 = 3/15 . (15/4)2

= (3.152)/(15.42) rút gọn 15 trên và dưới

= (3.15)/42 =45/16