Tính thể tích chóp SABCD có đáy là hình vuông cạnh bằng a, mặt bên SAB 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

Phương pháp:

Công thức tính thể tích khối chóp có diện tích đáy S và chiều cao h là: V = 1 3 S h  

Cách giải:

20 tháng 11 2018

Đáp án D 

Gọi H,M lần lượt là trung điểm của AB và CD

Vì Δ S A B  đều và mặt phẳng S A B ⊥ A B C D ⇒ S H ⊥ A B C D   .

Ta có

C D ⊥ H M C D ⊥ S H ⇒ C D ⊥ S H M     (1)

Gọi I là hình chiếu vuông góc của H  lên mặt phẳng   S C D (2) 

Từ (1) và (2) suy ra   H I ⊥ S C D

  Vì  A B // C D ⇒ A B // S C D ⇒ d A , S C D = d H , S C D = H I = 3 a 7 7

Giải sử A B = x    x > 0 ⇒ S H = x 3 2 H M = x   .

Mặt khác: 1 H I 2 = 1 H M 2 + 1 S H 2   ⇔ 7 9 a 2 = 1 x 2 + 4 3 x 2 ⇔ x 2 = 3 a 2 ⇒ x = 3 a  

 

Thể tích:   V S . A B C D = 1 3 S H . S A B C D = 1 3 . 3 a 2 .3 a 2 = 3 a 3 2  (đvtt)

 

26 tháng 7 2019

Đáp án đúng : B

15 tháng 10 2017

Gọi H là trung điểm của AB, suy ra A H ⊥ A B C D .

Gọi G là trọng tâm tam giác ∆SAB và O là tâm hình vuông ABCD.

Từ G kẻ GI//HO suy ra GI là trục đường tròn ngoại tiếp tam giác ∆SAB và từ O kẻ OI//SH thì OI là trục đường tròn ngoại tiếp hình vuông ABCD.

Ta có hai đường này cùng nằm trong mặt phẳng và cắt nhau tại I.

Suy ra I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD.

R = S I = S G 2 + G I 2 = a 21 6 .

Suy ra thể tích khối cầu ngoại tiếp khối chóp S.ABCD là  V = 4 3 π R 3 = 7 21 54 π a 3

Đáp án A

2 tháng 2 2018

Chọn B

24 tháng 11 2017

Đáp án D

Gọi M là trung điểm của AB

=>  S M ⊥ A B   ⇒ S M ⊥ A B C D S M = a 3 2 ⇒ V = 1 3 . S M . A B . A D = 1 3 . a 3 2 . a . a = a 3 3 6  

9 tháng 3 2019

Đáp án là D

7 tháng 7 2017

Đáp án D

Gọi M là trung điểm của AB

1 tháng 7 2017

Đáp án A

                                     

          Gọi H  là trung điểm  A B .

          Ta có  S A B ⊥ A B C D S A B ∩ A B C D = A B S H ⊂ S A B ; S H ⊥ A B ⇒ S H ⊥ A B C D .

          Khi đó:  V S . A B C D = 1 3 S H . S A B C D = 1 3 . a 3 2 . a 2 = a 3 3 6 .