Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- số số hạng của tổng là:
(15-1):2+1=8(số hạng)
Tổng trên có giá trị là:
(15+1).8:2=64
-số số hạng của tổng là:
(16-2):2+1=8(số hạng)
Tổng trên có giá trị là:
(16+2).8:2=72
-số số hạng của tổng là:
(22-1):3+1=8(số hạng)
Tổng trên có giá trị là:
(22+1).8:2=92
1+3+5+7+9+11+13+15=(1+15)+(3+13)+(5+11)+(7+9)=16x4=64
1+5+9+13+17+21+25+29+33+37=(1+37)+(5+33)+(9+29)+(13+25)+(17+21)=38x5=190
a) \(\frac{37}{25}+\frac{11}{21}-\frac{12}{25}+\frac{10}{21}\)
= \(\left(\frac{37}{25}-\frac{12}{25}\right)+\left(\frac{11}{21}+\frac{10}{21}\right)\)
= 1 + 1
= 2
\(\frac{37}{25}+\frac{11}{21}-\frac{12}{25}+\frac{10}{21}\)
=\(\left(\frac{37}{25}-\frac{12}{25}\right)+\left(\frac{11}{21}+\frac{11}{21}\right)\)
= 1 + 1 = 2 .
10 + 10 + 12 + 12 + 13 + 13 + 11
= 10 x 2 + 12 x 2 + 13 x 2 + 11
= 20 + 24 + 26 + 11
= 81
\(10+10+12+12+13+13+11\)
\(=10^2+12^2+13^2+11\)
\(=100+144+169+11\)
\(=424\)
\(\frac{10}{56}+\frac{10}{140}+...+\frac{10}{1400}\)
\(=\frac{5}{28}+\frac{5}{70}+...+\frac{5}{700}\)
\(=\frac{5}{3}\left(\frac{3}{28}+\frac{3}{70}+...+\frac{3}{700}\right)\)
\(=\frac{5}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{25.28}\right)\)
\(=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(=\frac{5}{3}.\frac{3}{14}=\frac{5}{14}\)
(1/10+-1/10)+(1/11+-1/11)+(1/12+-1/12)+(-1/13+1/13)+(-1/14+1/14)+(-1/15+1/15)+1/16
=0 + 0 +0 + 0 +0 +0 +1/16
=1/16
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (\(\dfrac{2}{2}\) + \(\dfrac{3}{3}\) + \(\dfrac{4}{4}\) + \(\dfrac{5}{5}\)+ \(\dfrac{6}{6}+\dfrac{7}{7}+\dfrac{8}{8}\) + \(\dfrac{10}{10}\))
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (1 + 1 +1 + 1+ 1+ 1+ 1 +1)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x 1 x 8
= \(\dfrac{1}{2}\) + \(\)\(\dfrac{1}{2}\) x 8
= \(\dfrac{1}{2}\) + 4
= \(\dfrac{9}{2}\)
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + 8
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{9}{18}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)
= \(\dfrac{1}{2}\) x 10
= 5
{(1+49)*5/20} + {(51+99)*5/20} = 50/4+150/4= 50