K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

Cách 1 : Gọi B = xy – x2y2 + x4y4 – x6y6 + x8y8

Thay x = –1 ; y = –1 vào biểu thức.

B = (–1).(–1) – (–1)2.(–1)2+ (–1)4.(–1)4 – (–1)6.(–1)6 + (–1)8.(–1)8

= + 1 – 1.1 + 1.1 – 1.1+ 1.1

= 1 – 1 + 1 – 1 + 1

= 1

Cách 2: Khi x = -1, y = -1 thì x.y = (-1).(-1) = 1.

Có : B = xy – x2y2 + x4y4 – x6y6 + x8y8 = xy – (xy)2 + (xy)4 – (xy)6 + (xy)8 = 1 - 1 + 1 - 1 + 1 = 1

19 tháng 4 2017

a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.

Trước hết ta thu gọn đa thức

A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3

Thay x = 5; y = 4 ta được:

A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.

Vậy A = 129 tại x = 5 và y = 4.

b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.

Thay x = -1; y = -1 vào biểu thức ta được:

M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8

= 1 -1 + 1 - 1+ 1 = 1.



22 tháng 1 2018

\(a.\)\(x^2+2xy-3x^3+2y^3+3x^3-y^3\)

=\(x^2+2xy+y^3\)

\(thếx=5;y=4\) \(ta\) \(có\)

= \(5^2+2.5.4+4^3\)

= 25 + 40 + 64

=129

b.

\(xy-x^2y^2+x^4y^4-x^6y^6+x^8y^8\)

thế \(x=-1;y=-1\) ta có:

(-1).(-1) - \(\left(-1\right)^2.\left(-1\right)^2\)+\(\left(-1\right)^4.\left(-1\right)^4-\left(-1\right)^6.\left(-1\right)^6+\left(-1\right)^8.\left(-1\right)^8\)

= 1 - 1.1 +1.1 - 1.1 +1.1

= 1-1+1-1+1

= 1

29 tháng 3 2017

a) \(x^2\) \(+2xy-3x^3\) \(+2y^3+3x^3-y^3\)

\(=x^2+2xy-\left(3x^3-3x^3\right)+\left(2y^3-y^3\right)\)

\(=x^2+2xy+y^3\)

Tại \(x=5;y=4\) thì:

\(5^2+2.5.4+4^3\)

\(=129\)

Vậy ....

b) Tại \(x=-1;y=-1\):

\(\left(-1\right).\left(-1\right)-\left(-1\right)^2.\left(-1\right)^2+\left(-1\right)^4.\left(-1\right)^4-\left(-1\right)^6.\left(-1\right)^6+\left(-1\right)^8.\left(-1\right)^8\)

\(=1\)

Vậy ....

29 tháng 3 2017

a, x2+2xy-3x3+2y3+3x3-y3

= x2+2xy+(-3x3+3x3)+(2y3-y3)

= x2+2xy+y3

Thay x=5 và y=4 vào đa thức x2+2xy+y3, ta có

52+2.5.4+43=129

Vậy giá trị của đa thức x2+2xy+y3 tại x=5 và y=4 là 129

b, xy- x2y2+x4y4-x6y6+x8y8

= xy-(xy)2+(xy)4-(xy)6+(xy)8

Ta có: xy=(-1)(-1)=1

Thay xy vào đa thức xy-(xy)2+(xy)4-(xy)6+(xy)8 ta có :

1-12+14-16+18=1-1+1-1+1=1

Vậy giá trị của biểu thức xy- x2y2+x4y4-x6y6+x8y8 tại x=-1 và y=-1 là 1

28 tháng 3 2018

bạn thế x=-2 y=-1 hay khác vào là ra à làm biếng làm quá

21 tháng 3 2018

a, Thay x= -2 và y = -1 vào đa thức

Ta có : 5xy\(^2\) + 2xy - 3xy\(^2\)

= ( 5xy\(^2\) - 3xy\(^2\) ) + 2xy

= 2xy\(^2\) + 2xy

= 2 . ( -2 ) . ( -1 ) + 2 . ( -2 ) . ( -1 )

= 4 + 4

= 8

Vậy 8 là giá trị của đa thức trên

6 tháng 3 2018

a)

Ta có \(xy+x^2y^2+x^3y^3+...+x^{10}y^{10}\\ =\left(xy+x^3y^3+x^5y^5+...+x^9y^9\right).\left(x^2y^2+x^4y^4+x^6y^6+...+x^{10}y^{10}\right)\)

Thay x= -1 và y= 1 vào biểu thức trên ta được\(\left(-1\right)1+\left(-1\right)^21^2+...+\left(-1\right)^{10}1^{10}\\ =\left[\left(-1\right)1+\left(-1\right)^31^3+...+\left(-1\right)^91^9\right].\left[\left(-1\right)^21^2+\left(-1\right)^41^4+...+\left(-1\right)^{10}1^{10}\right]\\ =\left(-1-1-...-1\right)+\left(1+1+...+1\right)\\ =-5+5=0\)

b)

Ta có:\(xyz+x^2y^2z^2+x^3y^3z^3+...+x^{10}y^{10}z^{10}\\ =\left(xyz+x^3y^3z^3+x^5y^5z^5+...+x^9y^9z^9\right).\left(x^2y^2z^2+x^4y^4z^4+x^6y^6z^6+...+x^{10}y^{10}z^{10}\right)\)

Thay x=1; y= -1 và z= -1 vào biểu thức trên ta được\(\left(-1\right)\left(-1\right)1+\left(-1\right)^2\left(-1\right)^21^2+...+\left(-1\right)^{10}\left(-1\right)^{10}1^{10}\\ =\left[\left(-1\right)\left(-1\right)1+\left(-1\right)^3\left(-1\right)^31^3+...+\left(-1\right)^9\left(-1\right)^91^9\right].\left[\left(-1\right)^2\left(-1\right)^21^2+\left(-1\right)^4\left(-1\right)^41^4+...+\left(-1\right)^{10}\left(-1\right)^{10}1^{10}\right]\\ =\left(1+1+...+1\right)+\left(1+1+...+1\right)\\ =5+5=10\)

6 tháng 9 2020

Ta có xy+x2y2+x3y3+...+x10y10=(xy+x3y3+x5y5+...+x9y9).(x2y2+x4y4+x6y6+...+x10y10)xy+x2y2+x3y3+...+x10y10=(xy+x3y3+x5y5+...+x9y9).(x2y2+x4y4+x6y6+...+x10y10)

Thay x= -1 và y= 1 vào biểu thức trên ta được(−1)1+(−1)212+...+(−1)10110=[(−1)1+(−1)313+...+(−1)919].[(−1)212+(−1)414+...+(−1)10110]=(−1−1−...−1)+(1+1+...+1)=−5+5=0(−1)1+(−1)212+...+(−1)10110=[(−1)1+(−1)313+...+(−1)919].[(−1)212+(−1)414+...+(−1)10110]=(−1−1−...−1)+(1+1+...+1)=−5+5=0

b)

Ta có:xyz+x2y2z2+x3y3z3+...+x10y10z10=(xyz+x3y3z3+x5y5z5+...+x9y9z9).(x2y2z2+x4y4z4+x6y6z6+...+x10y10z10)xyz+x2y2z2+x3y3z3+...+x10y10z10=(xyz+x3y3z3+x5y5z5+...+x9y9z9).(x2y2z2+x4y4z4+x6y6z6+...+x10y10z10)

Thay x=1; y= -1 và z= -1 vào biểu thức trên ta được(−1)(−1)1+(−1)2(−1)212+...+(−1)10(−1)10110=[(−1)(−1)1+(−1)3(−1)313+...+(−1)9(−1)919].[(−1)2(−1)212+(−1)4(−1)414+...+(−1)10(−1)10110]=(1+1+...+1)+(1+1+...+1)=5+5=10

23 tháng 2 2021

5rxdjexjgntrujnxgr6jexs6ue6thfydjytudcjxtyu45yuej8tuxr5ts

23 tháng 2 2021

hellp

20 tháng 2 2019

\(A=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)\)

\(\Rightarrow A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)\)

\(\Rightarrow A=0\) ( do x+y = 0 )

3 tháng 3 2017

y1 và y2 lần lượt bằng 8 và 6

còn x1, x2 lần lượt bằng -4 và -10

tick nhóe!

ahihi

13 tháng 7 2019

a) x^2 -5x tại x=1,x=-1,x=1 phần 2

Thay x=1 =>\(1^2-5.1=1-5=-4\)

Thay \(x=-1\Rightarrow\left(-1\right)^2-5.\left(-1\right)=1+5=6\)

Thay \(x=\frac{1}{2}\Rightarrow\left(\frac{1}{2}\right)^2-5\left(\frac{1}{2}\right)=\frac{1}{4}-\frac{5}{2}=-\frac{9}{4}\)

b)3x^2-xy tại x= -3,y=-5

Thay \(x=-3;y=-5\Rightarrow3.\left(-3\right)^2-\left(-3\right).\left(-5\right)=3.9-15=12\)

c)5-xy^3 tại x=1,y=-3

\(Thay...x=1;y=-3\Rightarrow5-1.\left(-3\right)^3=5-1.\left(-27\right)=5+27=32\)

13 tháng 7 2019

d)x^5-5 tại x=1,-1

\(Thay..x=1\Rightarrow1^5-5=1-5=-4\)

\(Thay..x=-1\Rightarrow\left(-1\right)^5-5=-1-5=-6\)

e)x^2-3x-5 tại x=-2,y=-1

\(Thay.x=-2;y=-1\Rightarrow\left(-2\right)^2-3\left(-2\right)-5=5+6-5=6\)

g)x^2y^2+x^4y^4+x^6y^6 tại x=1,y=-1

\(Thayx=1;y=-1\Rightarrow1^2\left(-1\right)^2+1^4\left(-1\right)^4+1^6\left(-1\right)^6=1+1+1=3\)

20 tháng 3 2018

a, \(A=x^3-x^2y+3x^2-xy+y^2-4y+x+2\)

\(=x^3-x^2y+3x^2-\left(xy-y^2+3y\right)-y+x+3-1\)

\(=x^2\left(x-y+3\right)-y\left(x-y+3\right)+\left(x-y+3\right)-1\)

Thay x-y+3=0 vào A

\(A=x^2.0-y.0+0-1=-1\)

b, \(B=x^3-2x^2y+3x^2+xy^2-3xy-2y+2x+4\)

\(=x^3-x^2y-x^2y+3x^2+xy^2-3xy-2y+2x+4\)

\(=x^3-x^2y+3x^2-x^2y+xy^2-3xy+2x-2y+6-2\)

\(=x^2\left(x-y+3\right)-xy\left(x-y+3\right)+2\left(x-y+3\right)-2\)

Thay x-y+3=0 vào B

\(B=x^2.0-xy.0+2.0-2=-2\)