\(Tìm\)\(x\)\(biết\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2020

x^2 + 100x = 0

<=> x(x + 100) = 0

<=> x = 0 hoặc x = -100

24 tháng 7 2020

\(x^2+100x=0\)

\(\Leftrightarrow x\times\left(x+100\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+100=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-100\end{cases}}\)

22 tháng 12 2020

Bai 1 

\(x^2+x-30=x^2+6x-5x-30=\left(x-5\right)\left(x+6\right)\)

Bai 2 

a, \(\left(x-2\right)^2-x\left(x-5\right)=13\)

\(\Leftrightarrow x^2-4x+4-x^2+5x=13\)

\(\Leftrightarrow x+4=13\Leftrightarrow x=9\)

b, \(4x^3-100x=0\Leftrightarrow x\left(4x^2-100\right)=0\)

\(\Leftrightarrow x\left(2x-10\right)\left(2x+10\right)=0\Leftrightarrow x=0;\pm5\)

5 tháng 7 2016

\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Rightarrow\left(x^3+2^3\right)-x^3-2x=15\)

\(\Rightarrow x^3+8-x^3-2x=15\)

\(\Rightarrow8-2x=15\)

=>2x=8-15=-7

=>x=\(\frac{-7}{2}\)

\(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)=0\)

\(\Rightarrow\left(x^2-1\right)\left[\left(x^2-1\right)^2-\left(x^4+x^2+1\right)\right]=0\)

\(\Rightarrow\left(x^2-1\right)\left[\left(x^4-2x^2+1\right)-\left(x^4+x^2+1\right)\right]=0\)

\(\Rightarrow\left(x^2-1\right)\left(x^4-2x^2+1-x^4-x^2-1\right)=0\)

\(\Rightarrow\left(x^2-1\right)\left(-3x^2\right)=0\)

=>x2-1=0 hoặc -3x2=0

+)Nếu x2-1=0

=>x2=1

=>x=-1 hoặc x=1

+)Nếu -3x2=0

=>3x2=0

=>x2=0

=>x=0

Vậy x=-1 hoặc x=1 hoặc x=0

7 tháng 11 2021

e) \(\left(9x^2-49\right)+\left(3x+7\right)\left(7x+3\right)=0\)

\(\Rightarrow\text{[}\left(3x\right)^2-7^2\text{]}+\left(3x+7\right)\left(7x+3\right)=0\)

\(\Rightarrow\left(3x-7\right)\left(3x+7\right)+\left(3x+7\right)\left(7x+3\right)=0\)

\(\Rightarrow\left(3x+7\right)\text{[}\left(3x-7\right)+\left(7x+3\right)\text{]}=0\)

\(\Rightarrow\left(3x+7\right)\left(3x-7+7x+3\right)=0\)

\(\Rightarrow\left(3x+7\right)\left(10x-4\right)=0\)

=> 2 TH

*3x+7=0               *10x-4=0

=>3x=-7               =>10x=4

=>x=-7/3              =>x=4/10=2/5

vậy x=-7/3 hoặc x=2/5

g) \(\left(x-4\right)^2=\left(2x-1\right)^2\)

\(\Rightarrow\left(x-4\right)^2-\left(2x-1\right)^2=0\)

\(\Rightarrow\left(x-4-2x+1\right)\left(x-4+2x-1\right)=0\)

\(\Rightarrow\left(-x-3\right)\left(3x-5\right)=0\)

\(\Rightarrow-\left(x+3\right)\left(3x-5\right)=0\)

=> 2 TH

*-(x+3)=0          *3x-5=0

=>-x=-3            =>3x=5  

=x=3                =>x=5/3

h)\(x^2-x^2+x-1=0\)

\(\Rightarrow0+x-1=0\)

\(\Rightarrow x-1=0\)

=>x=0+1

=>x=1

vậy x=1

k, x(x+ 16) - 7x - 42 = 0

=>x^2+16x-7x-42=0

=>x^2+9x-42=0

vì x^2>0

do đó x^2+9x-42>0

nên o có gt nào của x t/m y/cầu đề bài

m)x^2+7x+12=0

=>x^2+3x++4x+12=0

=>x(x+3)+4(x+3)=0

=>(x+4).(x+3)=0

=>2 TH

=> *x+4=0

=>x=-4

vậy x=-4

*x+3=0

=>x=-3

vậy x=-3

n)x^2-7x+12=0

=>x^2-4x-3x+12=0

=>x(x-4)-3(x-4)=0

=>(x-3).(x-4)=0

=>2 TH

*x-3=0=>x=0+3=>x=3

*x-4=0=>x=0+4=>x=4

vậy x=3 hoặc x=4

7 tháng 11 2021

a)(3x−3)(5−21x)+(7x+4)(9x−5)=44⇔15x−63x2−15+63x+63x2−35x+36x−20=44⇔79x−35=44⇔79x=79⇒x=1a)(3x−3)(5−21x)+(7x+4)(9x−5)=44⇔15x−63x2−15+63x+63x2−35x+36x−20=44⇔79x−35=44⇔79x=79⇒x=1

b)(x+1)(x+2)(x+5)−x2(x+8)=27⇔x2+2x+x+2(x+5)−x3−8x2=27⇔x2(x+5)+2x(x+5)+x(x+5)+2(x+5)−x3−8x2=27⇔x3+5x2+2x2+10x+x2+5x+2x+10−x3−8x2=27⇔17x+10=27⇔17x=17⇒x=1

24 tháng 7 2020

x2 + 2x = 0

<=> x( x + 2 ) = 0

<=> x = 0 hoặc x + 2 = 0

<=> x = 0 hoặc x = -2

Vậy S = { 0 ; -2 }

24 tháng 7 2020

Bg

Ta có: x2 + 2x = 0  (x \(\inℤ\))

=> xx + 2x = 0

=> x(x + 2) = 0

=> \(\hept{\begin{cases}x=0\\x+2=0\rightarrow x=0-2=-2\end{cases}}\)

Vậy x = 0 hay x = -2

16 tháng 8 2017

ANH HAY CHỊ ƠI LÀM GIÚP EM BAI LỚP 7 ĐI O DUOI DAY A

16 tháng 8 2017

a) \(\left(x-3\right)^2-4=0\)

\(\Rightarrow\left(x-3\right)^2=4\)

\(\Rightarrow\left(x-3\right)^2=2^2=\left(-2\right)^2\)

\(\Rightarrow x-3=2\)hoặc \(\left(x-3\right)=-2\)

\(\Rightarrow\hept{\begin{cases}x-3=2\\x-3=-2\end{cases}\Rightarrow\hept{\begin{cases}x=5\\x=-1\end{cases}}}\)

Vậy \(x\in\left\{5;-1\right\}\)

b) \(x^2-2x=24\)

\(\Rightarrow x.\left(x+2\right)=24\)

\(\Rightarrow x.\left(x+2\right)=4.6\)

\(\Rightarrow x=4\)

Vậy \(x=4\)

22 tháng 10 2021

a) \(\left(2a+b\right)^2-\left(2b+a\right)^2\)

\(=\left(2a+b+2b+a\right)\left(2a+b-2b-a\right)\)

\(=3\left(a+b\right)\left(a-b\right)\)

22 tháng 10 2021

b) \(x^4+2x^2y+y^2\)

\(=\left(x^2+y\right)^2\)

5 tháng 11 2017

1.

a. x2 - 2x + 1 = 0

x2 - 2x*1 + 12 = 0

(x-1)2 = 0

............( tới đây tui bí rùi tự suy nghĩ rùi lm tiếp ik)

1, Tìm x biết:

a, x2 - 2x +1 = 0

(x-1)2 = 0

x-1 = 0

x = 1. Vậy ...

b, ( 5x + 1)2 - (5x - 3) ( 5x + 3) = 30

25x2 +10x + 1 - (25x2 -9) = 30

25x2 +10x + 1 - 25x2 +9 = 30

10x + 10 =30

10(x+1) = 30

x+1 =3

x = 2. vậy ...

c, ( x - 1) ( x2 + x + 1) - x ( x +2 ) ( x - 2) = 5

(x3 - 1) - x(x2 -4) = 5

x3 - 1 - x3 + 4x = 5

4x - 1 = 5

4x = 6

x = \(\dfrac{3}{2}\) .vậy ...

d, ( x - 2)3 - ( x - 3) ( x2 + 3x + 9 ) + 6 ( x + 1)2 = 15

x3 - 6x2 + 12x - 8 - (x3 - 27) + 6 (x2 + 2x +1) =15

x3 - 6x2 + 12x - 8 - x3 + 27 + 6x2 + 12x +6 =15

24x + 25 = 15

24x = -10

x = \(\dfrac{-5}{12}\) vậy ...

a) \(x^2-16=0\Rightarrow x^2=16\Rightarrow x^2=\pm4\)

b) \(4x^2-9=0\Rightarrow\left(2x-3\right)\left(2x+3\right)=0\Rightarrow x=\pm1,5\)

c) \(25x^2-1=0\Rightarrow\left(5x-1\right)\left(5x+1\right)=0\Rightarrow x=\pm0,2\)

d) \(4\left(x-1\right)^2-9=0\Rightarrow\left(2x-2-3\right)\left(2x-2+3\right)=0\Rightarrow\left[{}\begin{matrix}2x-5=0\Rightarrow x=2,5\\2x+1=0\Rightarrow x=-0,5\end{matrix}\right.\)

e) \(25x^2-\left(5x+1\right)^2=0\Rightarrow\left(5x+5x+1\right)\left(5x-5x-1\right)=0\Rightarrow10x+1=0\Rightarrow x=-0,1\)

f) \(\dfrac{1}{4}-9\left(x-1\right)^2=0\Rightarrow\left(\dfrac{1}{2}+3x-3\right)\left(\dfrac{1}{2}-3x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{6}\\x=\dfrac{7}{6}\end{matrix}\right.\)

g) \(\dfrac{1}{16}-\left(2x+\dfrac{3}{4}\right)^2=0\Rightarrow\left(\dfrac{1}{4}+2x+\dfrac{3}{4}\right)\left(\dfrac{1}{4}-2x-\dfrac{3}{4}\right)=0\Rightarrow\left[{}\begin{matrix}x=-0,5\\x=-0,25\end{matrix}\right.\)

h) \(\dfrac{1}{9}x^2-\dfrac{2}{3}x+1=0\Rightarrow\left(\dfrac{1}{3}x-1\right)^2=0\Rightarrow\dfrac{1}{3}x=1\Rightarrow x=3\)

k) \(4\left(x-3\right)^2-\left(2-3x\right)^2=0\Rightarrow\left(2x-6+2-3x\right)\left(2x-6-2+3x\right)=0\Rightarrow\left[{}\begin{matrix}-x-4=0\Rightarrow x=-4\\5x-8=0\Rightarrow x=1,6\end{matrix}\right.\)

l) \(x^2-x-12=0\Rightarrow x^2-4x+3x-12=0\Rightarrow x\left(x-4\right)+3\left(x-4\right)=0\Rightarrow\left(x+3\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

13 tháng 9 2018

Cảm ơn bạn, ❤️

7 tháng 5 2017

a) \(x+5x^2=0\)

<=>\(x\left(1+5x\right)=0\)

+) \(x=0\) (TM)

+)\(1+5x=0\)

<=>\(5x=-1\)

<=>\(x=\dfrac{-1}{5}\) (TM)

Vậy \(x\) có 2 giá trị: \(x=\dfrac{-1}{5}\); \(x=0\)

b)\(x+1=\left(x+1\right)^2\)

<=>\(x+1-\left(x+1\right)^2=0\)

<=>\(\left(x+1\right)\left(1-x-1\right)=0\)

<=>\(\left(x+1\right)\left(-x\right)=0\)

+)\(x+1=0\)

<=>\(x=-1\) (TM)

+)\(-x=0\)

<=>\(x=0\) (TM)

Vậy \(x\) có 2 giá trị : \(x=-1\); \(x=0\)

c) \(x^3+x=0\)

<=> \(x\left(x^2+1\right)=0\)

+) \(x=0\) (TM)

+) \(x^2+1=0\)

<=>\(x^2=-1\)

Ta có: \(x^2\) >= 0, \(-1< 0\). Mà vế trái = vế phải

=> \(x^2=-1\) ( Vô nghiệm)

Vậy \(x=0\)

29 tháng 5 2017

a) \(x+5x^2=0\)

\(x\left(1+5x\right)=0\)

\(\Leftrightarrow x=0\) hoặc \(1+5x=0\)

\(\Leftrightarrow x=0\) hoặc \(x=\dfrac{-1}{5}\)

b) \(x+1=\left(x+1\right)^2\)

\(\Leftrightarrow x+1-\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)\left[1-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(1-x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)-x=0\)

\(\Leftrightarrow x+1=0\) hoặc \(-x=0\)

\(\Leftrightarrow x=-1\) hoặc \(x=0\)