Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bai 1
\(x^2+x-30=x^2+6x-5x-30=\left(x-5\right)\left(x+6\right)\)
Bai 2
a, \(\left(x-2\right)^2-x\left(x-5\right)=13\)
\(\Leftrightarrow x^2-4x+4-x^2+5x=13\)
\(\Leftrightarrow x+4=13\Leftrightarrow x=9\)
b, \(4x^3-100x=0\Leftrightarrow x\left(4x^2-100\right)=0\)
\(\Leftrightarrow x\left(2x-10\right)\left(2x+10\right)=0\Leftrightarrow x=0;\pm5\)
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Rightarrow\left(x^3+2^3\right)-x^3-2x=15\)
\(\Rightarrow x^3+8-x^3-2x=15\)
\(\Rightarrow8-2x=15\)
=>2x=8-15=-7
=>x=\(\frac{-7}{2}\)
\(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left(x^2-1\right)\left[\left(x^2-1\right)^2-\left(x^4+x^2+1\right)\right]=0\)
\(\Rightarrow\left(x^2-1\right)\left[\left(x^4-2x^2+1\right)-\left(x^4+x^2+1\right)\right]=0\)
\(\Rightarrow\left(x^2-1\right)\left(x^4-2x^2+1-x^4-x^2-1\right)=0\)
\(\Rightarrow\left(x^2-1\right)\left(-3x^2\right)=0\)
=>x2-1=0 hoặc -3x2=0
+)Nếu x2-1=0
=>x2=1
=>x=-1 hoặc x=1
+)Nếu -3x2=0
=>3x2=0
=>x2=0
=>x=0
Vậy x=-1 hoặc x=1 hoặc x=0
e) \(\left(9x^2-49\right)+\left(3x+7\right)\left(7x+3\right)=0\)
\(\Rightarrow\text{[}\left(3x\right)^2-7^2\text{]}+\left(3x+7\right)\left(7x+3\right)=0\)
\(\Rightarrow\left(3x-7\right)\left(3x+7\right)+\left(3x+7\right)\left(7x+3\right)=0\)
\(\Rightarrow\left(3x+7\right)\text{[}\left(3x-7\right)+\left(7x+3\right)\text{]}=0\)
\(\Rightarrow\left(3x+7\right)\left(3x-7+7x+3\right)=0\)
\(\Rightarrow\left(3x+7\right)\left(10x-4\right)=0\)
=> 2 TH
*3x+7=0 *10x-4=0
=>3x=-7 =>10x=4
=>x=-7/3 =>x=4/10=2/5
vậy x=-7/3 hoặc x=2/5
g) \(\left(x-4\right)^2=\left(2x-1\right)^2\)
\(\Rightarrow\left(x-4\right)^2-\left(2x-1\right)^2=0\)
\(\Rightarrow\left(x-4-2x+1\right)\left(x-4+2x-1\right)=0\)
\(\Rightarrow\left(-x-3\right)\left(3x-5\right)=0\)
\(\Rightarrow-\left(x+3\right)\left(3x-5\right)=0\)
=> 2 TH
*-(x+3)=0 *3x-5=0
=>-x=-3 =>3x=5
=x=3 =>x=5/3
h)\(x^2-x^2+x-1=0\)
\(\Rightarrow0+x-1=0\)
\(\Rightarrow x-1=0\)
=>x=0+1
=>x=1
vậy x=1
k, x(x+ 16) - 7x - 42 = 0
=>x^2+16x-7x-42=0
=>x^2+9x-42=0
vì x^2>0
do đó x^2+9x-42>0
nên o có gt nào của x t/m y/cầu đề bài
m)x^2+7x+12=0
=>x^2+3x++4x+12=0
=>x(x+3)+4(x+3)=0
=>(x+4).(x+3)=0
=>2 TH
=> *x+4=0
=>x=-4
vậy x=-4
*x+3=0
=>x=-3
vậy x=-3
n)x^2-7x+12=0
=>x^2-4x-3x+12=0
=>x(x-4)-3(x-4)=0
=>(x-3).(x-4)=0
=>2 TH
*x-3=0=>x=0+3=>x=3
*x-4=0=>x=0+4=>x=4
vậy x=3 hoặc x=4
a)(3x−3)(5−21x)+(7x+4)(9x−5)=44⇔15x−63x2−15+63x+63x2−35x+36x−20=44⇔79x−35=44⇔79x=79⇒x=1a)(3x−3)(5−21x)+(7x+4)(9x−5)=44⇔15x−63x2−15+63x+63x2−35x+36x−20=44⇔79x−35=44⇔79x=79⇒x=1
b)(x+1)(x+2)(x+5)−x2(x+8)=27⇔x2+2x+x+2(x+5)−x3−8x2=27⇔x2(x+5)+2x(x+5)+x(x+5)+2(x+5)−x3−8x2=27⇔x3+5x2+2x2+10x+x2+5x+2x+10−x3−8x2=27⇔17x+10=27⇔17x=17⇒x=1
x2 + 2x = 0
<=> x( x + 2 ) = 0
<=> x = 0 hoặc x + 2 = 0
<=> x = 0 hoặc x = -2
Vậy S = { 0 ; -2 }
Bg
Ta có: x2 + 2x = 0 (x \(\inℤ\))
=> xx + 2x = 0
=> x(x + 2) = 0
=> \(\hept{\begin{cases}x=0\\x+2=0\rightarrow x=0-2=-2\end{cases}}\)
Vậy x = 0 hay x = -2
ANH HAY CHỊ ƠI LÀM GIÚP EM BAI LỚP 7 ĐI O DUOI DAY A
a) \(\left(x-3\right)^2-4=0\)
\(\Rightarrow\left(x-3\right)^2=4\)
\(\Rightarrow\left(x-3\right)^2=2^2=\left(-2\right)^2\)
\(\Rightarrow x-3=2\)hoặc \(\left(x-3\right)=-2\)
\(\Rightarrow\hept{\begin{cases}x-3=2\\x-3=-2\end{cases}\Rightarrow\hept{\begin{cases}x=5\\x=-1\end{cases}}}\)
Vậy \(x\in\left\{5;-1\right\}\)
b) \(x^2-2x=24\)
\(\Rightarrow x.\left(x+2\right)=24\)
\(\Rightarrow x.\left(x+2\right)=4.6\)
\(\Rightarrow x=4\)
Vậy \(x=4\)
1.
a. x2 - 2x + 1 = 0
x2 - 2x*1 + 12 = 0
(x-1)2 = 0
............( tới đây tui bí rùi tự suy nghĩ rùi lm tiếp ik)
1, Tìm x biết:
a, x2 - 2x +1 = 0
(x-1)2 = 0
x-1 = 0
x = 1. Vậy ...
b, ( 5x + 1)2 - (5x - 3) ( 5x + 3) = 30
25x2 +10x + 1 - (25x2 -9) = 30
25x2 +10x + 1 - 25x2 +9 = 30
10x + 10 =30
10(x+1) = 30
x+1 =3
x = 2. vậy ...
c, ( x - 1) ( x2 + x + 1) - x ( x +2 ) ( x - 2) = 5
(x3 - 1) - x(x2 -4) = 5
x3 - 1 - x3 + 4x = 5
4x - 1 = 5
4x = 6
x = \(\dfrac{3}{2}\) .vậy ...
d, ( x - 2)3 - ( x - 3) ( x2 + 3x + 9 ) + 6 ( x + 1)2 = 15
x3 - 6x2 + 12x - 8 - (x3 - 27) + 6 (x2 + 2x +1) =15
x3 - 6x2 + 12x - 8 - x3 + 27 + 6x2 + 12x +6 =15
24x + 25 = 15
24x = -10
x = \(\dfrac{-5}{12}\) vậy ...
a) \(x^2-16=0\Rightarrow x^2=16\Rightarrow x^2=\pm4\)
b) \(4x^2-9=0\Rightarrow\left(2x-3\right)\left(2x+3\right)=0\Rightarrow x=\pm1,5\)
c) \(25x^2-1=0\Rightarrow\left(5x-1\right)\left(5x+1\right)=0\Rightarrow x=\pm0,2\)
d) \(4\left(x-1\right)^2-9=0\Rightarrow\left(2x-2-3\right)\left(2x-2+3\right)=0\Rightarrow\left[{}\begin{matrix}2x-5=0\Rightarrow x=2,5\\2x+1=0\Rightarrow x=-0,5\end{matrix}\right.\)
e) \(25x^2-\left(5x+1\right)^2=0\Rightarrow\left(5x+5x+1\right)\left(5x-5x-1\right)=0\Rightarrow10x+1=0\Rightarrow x=-0,1\)
f) \(\dfrac{1}{4}-9\left(x-1\right)^2=0\Rightarrow\left(\dfrac{1}{2}+3x-3\right)\left(\dfrac{1}{2}-3x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{6}\\x=\dfrac{7}{6}\end{matrix}\right.\)
g) \(\dfrac{1}{16}-\left(2x+\dfrac{3}{4}\right)^2=0\Rightarrow\left(\dfrac{1}{4}+2x+\dfrac{3}{4}\right)\left(\dfrac{1}{4}-2x-\dfrac{3}{4}\right)=0\Rightarrow\left[{}\begin{matrix}x=-0,5\\x=-0,25\end{matrix}\right.\)
h) \(\dfrac{1}{9}x^2-\dfrac{2}{3}x+1=0\Rightarrow\left(\dfrac{1}{3}x-1\right)^2=0\Rightarrow\dfrac{1}{3}x=1\Rightarrow x=3\)
k) \(4\left(x-3\right)^2-\left(2-3x\right)^2=0\Rightarrow\left(2x-6+2-3x\right)\left(2x-6-2+3x\right)=0\Rightarrow\left[{}\begin{matrix}-x-4=0\Rightarrow x=-4\\5x-8=0\Rightarrow x=1,6\end{matrix}\right.\)
l) \(x^2-x-12=0\Rightarrow x^2-4x+3x-12=0\Rightarrow x\left(x-4\right)+3\left(x-4\right)=0\Rightarrow\left(x+3\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
a) \(x+5x^2=0\)
<=>\(x\left(1+5x\right)=0\)
+) \(x=0\) (TM)
+)\(1+5x=0\)
<=>\(5x=-1\)
<=>\(x=\dfrac{-1}{5}\) (TM)
Vậy \(x\) có 2 giá trị: \(x=\dfrac{-1}{5}\); \(x=0\)
b)\(x+1=\left(x+1\right)^2\)
<=>\(x+1-\left(x+1\right)^2=0\)
<=>\(\left(x+1\right)\left(1-x-1\right)=0\)
<=>\(\left(x+1\right)\left(-x\right)=0\)
+)\(x+1=0\)
<=>\(x=-1\) (TM)
+)\(-x=0\)
<=>\(x=0\) (TM)
Vậy \(x\) có 2 giá trị : \(x=-1\); \(x=0\)
c) \(x^3+x=0\)
<=> \(x\left(x^2+1\right)=0\)
+) \(x=0\) (TM)
+) \(x^2+1=0\)
<=>\(x^2=-1\)
Ta có: \(x^2\) >= 0, \(-1< 0\). Mà vế trái = vế phải
=> \(x^2=-1\) ( Vô nghiệm)
Vậy \(x=0\)
a) \(x+5x^2=0\)
\(x\left(1+5x\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(1+5x=0\)
\(\Leftrightarrow x=0\) hoặc \(x=\dfrac{-1}{5}\)
b) \(x+1=\left(x+1\right)^2\)
\(\Leftrightarrow x+1-\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)\left[1-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(1-x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)-x=0\)
\(\Leftrightarrow x+1=0\) hoặc \(-x=0\)
\(\Leftrightarrow x=-1\) hoặc \(x=0\)
x^2 + 100x = 0
<=> x(x + 100) = 0
<=> x = 0 hoặc x = -100
\(x^2+100x=0\)
\(\Leftrightarrow x\times\left(x+100\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+100=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-100\end{cases}}\)