Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e Giả sử x^2 -3x +2=0 => x^2-3x=-2 => x(x-3)=-2=1*-2=-1*2 và
TH1 x=1 => 1(1-3)=1*-2=-2 ( chọn)
TH2 x=-1 => -1(-1-3) =4( loại)
TH3 x=2 => 2(2-3)=-2( chọn)
TH4 x=-2 => -2(-2-3)=10 ( loại)
Vây số giá trị nghiệm của đa thức đó là 1;2
a )
\(x^2-x+1=0\)
( a = 1 ; b= -1 ; c = 1 )
\(\Delta=b^2-4.ac\)
\(=\left(-1\right)^2-4.1.1\)
\(=1-4\)
\(=-3< 0\)
vì \(\Delta< 0\) nên phương trình vô nghiệm
=> đa thức ko có nghiệm
b ) đặc t = x2 ( \(t\ge0\) )
ta có : \(t^2+2t+1=0\)
( a = 1 ; b= 2 ; b' = 1 ; c =1 )
\(\Delta'=b'^2-ac\)
\(=1^2-1.1\)
\(=1-1=0\)
phương trình có nghiệp kép
\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )
vì \(t_1=t_2=-1< 0\)
nên phương trình vô nghiệm
Vay : đa thức ko có nghiệm
2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)
Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)
=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)
=> \(f\left(x\right)=5x^2-1\)
Khi \(f\left(x\right)=0\)
=> \(5x^2-1=0\)
=> \(5x^2=1\)
=> \(x^2=\frac{1}{5}\)
=> \(x=\sqrt{\frac{1}{5}}\)
Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)
Bài 1:
a: cho -6x+5=0
⇔ x=\(\dfrac{-5}{-6}\)=\(\dfrac{5}{6}\)
vậy nghiệm của đa thức là:\(\dfrac{5}{6}\)
b: cho x2-2x=0 ⇔ x(x-2)
⇒ x=0 / x-2=0 ⇒ x=0/2
Vậy nghiệm của đa thức là :0 hoặc 2
d : cho x2-4x+3=0 ⇔ x2-x-3x+3=0 ⇔ x(x-1) - 3(x-1)=0 ⇔ (x-3)(x-1)
⇒\(\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy nghiệm của đa thức là 1 hoặc 3
f : Cho 3x3+x2=0 ⇔ x2(3x+1)=0
⇒\(\left[{}\begin{matrix}x^2=0\\3x+1=0\end{matrix}\right.\)⇒\(\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy nghiệm của đa thức là :0 hoặc \(\dfrac{-1}{3}\)
Xin lỗi mình không có thời gian làm hết
1) a) x=0 hoặc x=4 hoặc x=-4
b) x=-3 hoặc x=1 hoặc x=-1
c) x=1 hoặc x=4
d) x=1 hoặc x=-1/6
2) a) m(x) = 3x
b) x=-2 hoặc x=-1
b) x^2 +2x=0
=> x*(x+2)=0
=>x=0
x+2=0=>x=-2
còn lại tương tự như thế nha
a: P(x)=0
=>4x-1/2=0
=>x=1/8
b: Q(x)=0
=>(x-1)(x+1)=0
=>x=1 hoặc x=-1
c: A(x)=0
=>-12x+18=0
=>-12x=-18
hay x=3/2
d: B(x)=0
=>-x2=-16
=>x=4 hoặc x=-4
e: C(x)=0
=>3x2=-12
=>\(x\in\varnothing\)
Dạng 1:
a: =>x(x-3)=0
=>x=3 hoặc x=0
b: =>x(3x-4)=0
=>x=4/3 hoặc x=0
c: =>2x-1=0
=>x=1/2
d: =>2x(2x+3)=0
=>x=0 hoặc x=-3/2
e: =>x(2x+5)=0
=>x=-5/2 hoặc x=0
Giải:
a) Để đa thức có nghiệm thì
\(x^2-4x=0\)
\(\Leftrightarrow\left(x-4\right)x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy ...
b) Để đa thức có nghiệm thì
\(\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
Vậy ...
c) Để đa thức có nghiệm thì
\(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x\in\varnothing\end{matrix}\right.\)
Vậy ...
Các ý còn lại làm tương tự.
a) \(\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
...
..
f) \(\Leftrightarrow x^2+\dfrac{7}{2}x+\dfrac{5}{2}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{7}{4}x\right)+\left(\dfrac{7}{4}x+\dfrac{7.7}{4.4}\right)+\dfrac{5}{2}-\dfrac{49}{16}=0\)
\(\Leftrightarrow x\left(x+\dfrac{7}{4}\right)+\dfrac{7}{4}\left(x+\dfrac{7}{4}\right)=\dfrac{49-5.8}{16}=\dfrac{9}{16}\)
\(\Leftrightarrow\left(x+\dfrac{7}{4}\right)^2=\left(\dfrac{3}{4}\right)^2\)
\(\left|x+\dfrac{7}{4}\right|=\dfrac{3}{4}\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{4}-\dfrac{3}{4}=\dfrac{-5}{2}\\x=-\dfrac{7}{4}+\dfrac{3}{4}=-1\end{matrix}\right.\)
a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)
=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
__________________________________
P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
_________________________________________
P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
c)Thay x=0 vào đa thức P(x), ta có:
P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)
=0+0-0-0-0
=0
Vậy x=0 là nghiệm của đa thức P(x).
Thay x=0 vào đa thức Q(x), ta có:
Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)
=0+0-0+0-\(\dfrac{1}{4}\)
=0-\(\dfrac{1}{4}\)
=\(\dfrac{-1}{4}\)
Vậy x=0 không phải là nghiệm của đa thức Q(x).
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x5−3x2+7x4−9x3+x2−14xP(x)=x5−3x2+7x4−9x3+x2−14x
=x5+7x4−9x3−2x2−14x=x5+7x4−9x3−2x2−14x
Q(x)=5x4−x5+x2−2x3+3x2−14Q(x)=5x4−x5+x2−2x3+3x2−14
=−x5+5x4−2x3+4x2−14=−x5+5x4−2x3+4x2−14
b) P(x) + Q(x) = (x5+7x4−9x3−2x2−1
- \(x\) - 3\(x^2\) = 0
- \(x\)( 1 + 3\(x\)) =0
\(\left[{}\begin{matrix}x=0\\1+3x=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\3x=-1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {0; - \(\dfrac{1}{3}\)}
Lời giải:
$E(x)=-x-3x^2=0$
$\Rightarrow -x(1+3x)=0$
$\Rightarrow x=0$ hoặc $1+3x=0$
$\Rightarrow x=0$ hoặc $x=\frac{-1}{3}$
Vậy nghiệm của $E(x)$ là $x=0$ và $x=\frac{-1}{3}$