Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|=20092009\)
\(\Rightarrow\left|x-y+y-z+z-t+t-x\right|=20092009\)
\(\Rightarrow\left|0\right|=20092009\)
\(\Rightarrow0=20092009\) ( Vô lý )
\(\Rightarrow\) Không có giá trị thõa mãn \(x,y,t,z\)
Ta có:
(x - y) + (y - z) + (z - t) + (t - x)
= x - y + y - z + z - t + t - x
= 0, là số chẵn
Do |x - y| + |y - z| + |z - t| + |t - x| luôn cùng tính chẵn lẻ với (x - y) + (y - z) + (z - t) + (t - x)
=> |x - y| + |y - z| + |z - t| + |t - x| là số chẵn
Mà theo đề bài |x - y| + |y - z| + |z - t| + |t - x| = 20092009, là số lẻ, vô lý
Vậy không tồn tại giá trị của x; y; z; t là số nguyên thỏa mãn đề bài
Ta có: \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{x+t+y}=\frac{t}{x+y+z}\)
Thêm 1 vào mỗi phân số ta được:
\(\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{x+t+y}+1=\frac{t}{x+y+z}+1\)
\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{x+t+y}=\frac{x+y+z+t}{x+y+z}\)
- Nếu x + y + z + t \(\ne\) 0 thì x = y = z = t
\(\Rightarrow P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}=1+1+1+1=4\)
- Nếu x + y + z + t = 0 thì x + y = -(z + t)
y + z = -(t + x)
z + t = -(x + y)
t + x = -(y + z)
\(\Rightarrow P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(y+z\right)}{y+z}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
từ dữ kiện của đề bài cho.
ta cộng lần lượt các vế của đẳng thức với 1
sau đó quy đồng ta sẽ dễ dàng nhìn thấy x=y=z=t
suy ra P=4