K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2021

Giúp tôi với

6 tháng 10 2021

Lớp 6 học đến t/c dãy tỉ số bằng nhau chưa nhỉ?

14 tháng 7 2019

cái này là hệ 3 ẩn rồi 

===================================

a, theo bài ra 

x+y=6 (1)

-y +z = - 5 (2) 

(1) + (2) <=> x+z = 6-5=1 , lại có x-z=9 

=> (x+z)+(x-z)=1+9<=> 2x=10<=> x=5 => z = -4 

Thay x=5 vào (1) => y=6-x=6-5=1 

vậy x=5 , y=1 , z = -4

:V tương tự với câu b nhé

14 tháng 7 2019

Mk có cách khác nhé:

b) Ta có:

\(x+y-y-z-z-x=6+7+13\) 

\(-2z=26\Rightarrow z=-13\) 

\(\Rightarrow y=6;x=0\) 

Vậy .....

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)

25 tháng 2 2018

Sửa lại đề nha : 

   \(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}\)

mà x + z = 7 + y

=> x + z - y = 7 

Áp dụng tính chất dãy tỉ số bằng ngau ta có :

\(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}=\frac{x+z-y}{3+10-6}=\frac{7}{7}=1\)

\(\Rightarrow\frac{x}{3}=1\Rightarrow x=3.1=3\)

\(\frac{y}{6}=1\Rightarrow y= 6.1=6\)

\(\frac{z}{10}=1\Rightarrow z=10.1=10\)

   Vậy x = 3 ; y =6 ; z = 10 .

25 tháng 2 2018

áp dụng tính chất dãy tỉ số bằng nhau

ta có:\(\frac{x}{3}\)=\(\frac{6}{y}\)=\(\frac{z}{10}\)=\(\frac{x+z}{3+10}\)=\(\frac{7+y}{13}\) =\(\frac{6+7+y}{y+13}\) =\(\frac{y+13}{y+13}\)=1

=>x=3 ; y=6 ; z=10

14 tháng 7 2016

a./ \(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=\frac{x-y+z}{5-7+4}=\frac{-10}{2}=-5\)

\(\Rightarrow x=-25;y=-35;z=-20\)

14 tháng 7 2016

b./ \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{-7}=\frac{x+y-z}{5-4-\left(-7\right)}=\frac{-40}{6}=-5\)

\(\Rightarrow x=-25;y=20;z=35\)

1 tháng 8 2017

Ta thấy: \(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x+y+z}{5+7+9}=\frac{315}{21}=15\)
Khi đó: 
\(\frac{x}{5}=15\)\(\Rightarrow x=15\cdot5=75\)
\(\frac{y}{7}=15\)\(\Rightarrow y=15\cdot7=105\)
\(\frac{z}{9}=15\)\(\Rightarrow z=15\cdot9=135\)

1 tháng 8 2017

x/5 = y/7 = z/9 = k => x = 5k ; y = 7k ; z = 9k 

x + y + z = 315 => 5k + 7k + 9k = 315 => 21k = 315 => k = 15

Với k = 15 => x = 15 . 5 = 75

                       y = 15 . 7 = 105

                       z = 15 . 9 = 135

Vậy x = 75 ; y = 105 ; z = 135 

18 tháng 2 2019

a)ta có xy=7*9=7*3*3

vậy x =9;21 , y=7;3

b) xy=-2*5

mà x<0<y

nên x=-2 ,y=5

c)x-y=5 hay x=y+5

\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)

18 tháng 2 2019

câu c mk nhầm đề sr bạn nha

\(\frac{y+5-4}{y-5}=\frac{4}{3}\Rightarrow3y+3=4y-5\Rightarrow y=8\Rightarrow x=13\)

5 tháng 8 2020

Bài làm:

a) Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x}{7}=\frac{y}{5}=\frac{z}{6}=\frac{x-2y+3z}{7-10+18}=\frac{60}{15}=4\)

\(\Rightarrow\hept{\begin{cases}x=28\\y=20\\z=24\end{cases}}\)

b) Ta có: \(\frac{x}{y}=\frac{3}{5}\Leftrightarrow\frac{x}{3}=\frac{y}{5}\) và \(\frac{y}{z}=\frac{5}{8}\Leftrightarrow\frac{y}{5}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{8}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{3+5+8}=\frac{72}{16}=\frac{9}{2}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{45}{2}\\z=36\end{cases}}\)

5 tháng 8 2020

a) \(\hept{\begin{cases}\frac{x}{7}=\frac{y}{5}=\frac{z}{6}\\x-2y+3z=60\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{7}=\frac{2y}{10}=\frac{3z}{18}\\x-2y+3z=60\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{7}=\frac{2y}{10}=\frac{3z}{18}=\frac{x-2y+3z}{7-10+18}=\frac{60}{15}=4\)

\(\Rightarrow\hept{\begin{cases}x=28\\y=20\\z=24\end{cases}}\)

b) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\\frac{y}{z}=\frac{5}{8}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\\frac{y}{5}=\frac{z}{8}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}=\frac{z}{8}\\x+y+z=72\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{3+5+8}=\frac{72}{16}=\frac{9}{2}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{45}{2}\\z=36\end{cases}}\)