K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

a) x/5=y/2

= x+y/5+2=21/7=3

=> x/5=3=>x=15

    y/2=3=>x=6

29 tháng 10 2017

1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

\(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)

\(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)

c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)

*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)

*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)

8 tháng 10 2020

a. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)

Suy ra :

+) \(\frac{x}{7}=2\Leftrightarrow x=14\)

+) \(\frac{y}{13}=2\Leftrightarrow y=26\)

Vậy x = 14 ; y = 26

b. \(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)

Suy ra :

+) \(\frac{x}{17}=-3\Leftrightarrow x=-51\)

+) \(\frac{y}{3}=-3\Leftrightarrow y=-9\)

Vậy x = - 51 ; y = - 9

c. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{19}=\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

Suy ra :

+) \(\frac{x}{19}=2\Leftrightarrow x=38\)

+) \(\frac{y}{21}=2\Leftrightarrow y=42\)

Vậy x = 38 ; y = 42

d. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

Suy ra :

+) \(\frac{x^2}{9}=4\Leftrightarrow x^2=36=6^2\Leftrightarrow x=\pm6\)

+) \(\frac{y^2}{16}=4\Leftrightarrow y^2=64=8^2\Leftrightarrow y=\pm8\)

Vậy x =\(\pm\)6 ; y =\(\pm\)8

8 tháng 10 2020

a,AD t/c DTS bằng nhau ta có:

\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=2\Rightarrow x=14\\\frac{y}{13}=2\Rightarrow y=26\end{cases}}\)

b,\(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)

AD t/c DTS bằng nhua ta có:

\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=-\frac{60}{20}=-3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{17}=-3\Rightarrow x=-51\\\frac{y}{3}=-3\Rightarrow y=-9\end{cases}}\)

c,\(\frac{x}{19}=\frac{y}{21}\Leftrightarrow\frac{2x}{38}=\frac{y}{21}\)

AD t/c DTS bằng nhau ta có:

\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{19}=2\Rightarrow x=38\\\frac{y}{21}=2\Rightarrow x=42\end{cases}}\)

d,Đặt \(\frac{x^2}{9}=\frac{y^2}{16}=k\)

\(\Rightarrow x^2=9k;y^2=16k\)

\(\Rightarrow x^2+y^2=9k+16k=25k=100\)

\(\Rightarrow k=4\)

\(\Rightarrow\frac{x^2}{9}=4\Leftrightarrow x^2=36;\frac{y^2}{16}=4\Leftrightarrow y^2=64\)

\(\Rightarrow\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

31 tháng 8 2021

\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)

Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)

Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)

\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)

Lại có : \(2x+3y-z=186\)

Thay vào ta có :

\(2.15k+3.20k-28k=186\)

\(30k+60k-28k=186\)

\(62k=186\)

\(k=3\)

Thay vào ta được :

\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)

Vậy .....

25 tháng 4 2024

1) Tìm x, biết:

a) x:2=y:5 và x+y=21

b) x2=y2𝑥2=𝑦2và x.y=54

c) x:7=y:5 và y-x=12

2) Tím các số x, y, z, biết:

a) x10=y6=z21𝑥10=𝑦6=𝑧21và 5x+y-2z=28

b) x3=y4𝑥3=𝑦4y5=z7𝑦5=𝑧7và 2x+3y-z=124

c) 3x=2y; 7y=5z và x-y+z=32

d) 2x=3x=5z và x+y-z=95

14 tháng 7 2019

\(a,\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}\)và x + y + z = 49

Ta có : \(\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{2}+\frac{5}{4}}=\frac{49}{\frac{19}{4}}=49\cdot\frac{4}{19}=\frac{196}{19}\)

Vậy : \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=\frac{196}{19}\\\frac{y}{\frac{4}{2}}=\frac{196}{19}\\\frac{z}{\frac{5}{4}}=\frac{169}{14}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{294}{19}\\y=\frac{392}{19}\\z=\frac{245}{19}\end{cases}}\)

14 tháng 7 2019

\(b,\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\)và 2x + 3y - z = 186

Ta có : \(\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\Leftrightarrow\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)

\(\Leftrightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)

\(\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

\(\Leftrightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

Vậy : \(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}\)

7 tháng 8 2017

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=13.2=26\end{matrix}\right.\)

Vật \(x=14;y=26\)

b) (Chỗ này bạn viết nhầm thì phải)

Ta có:

\(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)

\(x-y=-16\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{-16}{-4}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.4=12\\y=7.4=28\end{matrix}\right.\)

Vậy \(x=12;y=28\)

c) Ta có:

\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}\)

\(2x-y=34\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

\(\Rightarrow\left\{{}\begin{matrix}2x=38.2=76\Rightarrow x=38\\y=21.2=42\end{matrix}\right.\)

Vậy \(x=38;y=42\)

d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=9.4=36=6^2=\left(-6\right)^2\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\y^2=16.4=64=8^2=\left(-8\right)^2\Rightarrow\left[{}\begin{matrix}y=8\\y=-8\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(x:y\right)\in\left\{\left(6;8\right);\left(6;-8\right);\left(-6;8\right);\left(-6;-8\right)\right\}\)

7 tháng 8 2017

Cả 4 cái có 1 câu huyền thoại:"Áp dụng tính chất dãy tỉ số = nhau ta có" nên mk nói cho cả 4 lun :v

a) \(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.7=14\\y=2.13=26\end{matrix}\right.\)

b) \(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.19=38\\y=2.21=42\end{matrix}\right.\)

c) \(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{-16}{-4}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=4.3=12\\y=4.7=28\end{matrix}\right.\)

c) \(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=4.9=36\Rightarrow x=\pm6\\y^2=4.16=64\Rightarrow y=\pm8\end{matrix}\right.\)

\(\)

31 tháng 7 2016

Hỏi đáp Toán

31 tháng 7 2016

a.

\(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{14}{17}\)

\(\frac{2x}{38}=\frac{14}{17}\Rightarrow x=\frac{266}{17}\)

\(\frac{y}{21}=\frac{14}{17}\Rightarrow y=\frac{294}{17}\)

b.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

\(\frac{x^2}{9}=4\Rightarrow x=\pm6\)

\(\frac{y^2}{16}=4\Rightarrow y=\pm8\)

17 tháng 8 2019

*Bài làm:

a, Ta có: \(\frac{x}{y}\) = \(\frac{7}{3}\) (theo đề bài).

\(\frac{x}{7}\) = \(\frac{y}{3}\)

\(\frac{5x}{35}\) = \(\frac{2y}{6}\) . \(5x-2y\) = \(87\) .

Áp dụng tính chất dãy tỉ số bằng nhau , ta được:

\(\frac{5x}{35}\) = \(\frac{2y}{6}\) = \(\frac{5x-2y}{35-6}\) = \(\frac{87}{29}\) = \(3\) .

\(\left\{{}\begin{matrix}\frac{5x}{35}=3\\\frac{2y}{6}=3\end{matrix}\right.\) \(\left\{{}\begin{matrix}5x=3.35=105\\2y=3.6=18\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=105\div5=21\\y=18\div2=9\end{matrix}\right.\)

Vậy: \(\left(x;y\right)=\left(21;9\right)\) .

b, Ta có: \(\frac{x}{19}\) = \(\frac{y}{21}\)

\(\frac{2x}{38}\) = \(\frac{y}{21}\) . Mà \(2x-y\) = \(34\) .

Áp dụng tính chất dãy tỉ số bằng nhau , ta được:

\(\frac{2x}{38}\) = \(\frac{y}{21}\) = \(\frac{2x-y}{38-21}\) = \(\frac{34}{17}\) = \(2\) .

\(\left\{{}\begin{matrix}\frac{2x}{38}=2\\\frac{y}{21}=2\end{matrix}\right.\) \(\left\{{}\begin{matrix}2x=2.38=76\\y=2.21=42\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=76\div2=38\\y=42\end{matrix}\right.\)

➤ Vậy: \(\left(x;y\right)=\left(38;42\right)\) .

c, Ta có: \(\left(\frac{-2}{3}\right)\) . \(x\) = \(\left(\frac{-2}{3}\right)^5\)

\(x\) = \(\left(\frac{-2}{3}\right)^5\) \(\div\) \(\left(\frac{-2}{3}\right)\)

\(x\) = \(\left(\frac{-2}{3}\right)^4\)

\(x\) = \(\frac{\left(-2\right)^4}{3^4}\)

\(x\) = \(\frac{16}{81}\)

➤ Vậy: \(x\) = \(\frac{16}{81}\) .

d, Ta có: \(\left(\frac{-1}{3}\right)^3\) . \(x\) = \(\frac{1}{81}\)

\(\frac{\left(-1\right)^3}{3^3}\) . \(x\) = \(\frac{1}{81}\)

\(\frac{-1}{27}\) . \(x\) = \(\frac{1}{81}\)

\(x\) = \(\frac{1}{81}\) \(\div\) \(\frac{-1}{27}\)

\(x\) = \(\frac{-1}{3}\)

➤ Vậy: \(x\) = \(\frac{-1}{3}\) .

☛ Chúc bạn học tốt!

17 tháng 8 2019

c) \(\left(-\frac{2}{3}\right).x=\left(-\frac{2}{3}\right)^5\)

=> \(x=\left(-\frac{2}{3}\right)^5:\left(-\frac{2}{3}\right)\)

=> \(x=\left(-\frac{2}{3}\right)^4\)

=> \(x=\frac{16}{81}\)

Vậy \(x=\frac{16}{81}.\)

d) \(\left(-\frac{1}{3}\right)^3.x=\frac{1}{81}\)

=> \(\left(-\frac{1}{27}\right).x=\frac{1}{81}\)

=> \(x=\frac{1}{81}:\left(-\frac{1}{27}\right)\)

=> \(x=-\frac{1}{3}\)

Vậy \(x=-\frac{1}{3}.\)

Chúc bạn học tốt!