K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2018

Để giá trị biểu thức 2x – 5 không âm

⇔ 2x – 5 ≥ 0.

⇔ 2x ≥ 5 (Chuyển vế và đổi dấu hạng tử -5).

⇔ Giải bài 29 trang 48 SGK Toán 8 Tập 2 | Giải toán lớp 8 (Chia cả hai vế cho 2 > 0, BPT không đổi chiều).

Vậy với Giải bài 29 trang 48 SGK Toán 8 Tập 2 | Giải toán lớp 8 thì giá trị biểu thức 2x – 5 không âm.

24 tháng 2 2018

a) Giá trị của biểu thức không âm khi :

\(2x-5\ge0\Leftrightarrow2x\ge5\)

\(\Leftrightarrow\) \(x\ge\dfrac{5}{2}\)

Vậy để 2x-5 không âm khi \(x\ge\dfrac{5}{2}\)

b) Giá trị của biểu thức -3xkhông lớn hơn giá trị của biểu thức -7x + 5 khi: \(-3x\le-7x+5\)

\(\Leftrightarrow\) \(-3x+7x\le5\Leftrightarrow4x\le5\Leftrightarrow x\le\dfrac{5}{4}\)

Vậy để giá trị của -3x không lớn hơn giá trị của -7x+5 thì \(x\le\dfrac{5}{4}\)

22 tháng 4 2017

a)Ta có bất phương trình: 2x – 5 ≥ 0 ⇔ 2x > 5

x52x≥52

Vậy để cho 2x – 5 không âm thì x52x≥52 .

b)Tìm x sao cho giá trị của biểu thức -3x không lớn hơn giá trị của biểu thức -7x + 5.

Ta có : -3x ≤ -7x + 5 ⇔-3x + 7x ≤ 5

⇔2x ≤ 5

⇔x ≤5252

Vậy để cho giá trị của -3x không lớn hơn giá trị của -7x + 5 thì x52x≤52 .

16 tháng 4 2019

A/ Theo đề ta có  \(\frac{x}{2}-\frac{x-5}{10}\) không âm

\(\Rightarrow\frac{x}{2}-\frac{x-5}{10}\ge0\)

\(\Rightarrow\frac{5x}{10}-\frac{x-5}{10}\ge0\)

\(\Rightarrow\frac{5x-x+5}{10}\ge0\)

\(\Rightarrow\frac{4x+5}{10}\ge0\)

\(\Rightarrow4x+5\ge0\)

\(\Rightarrow4x\ge-5\)

\(\Rightarrow x\ge-\frac{5}{4}\)

\(\Rightarrow S=\left\{x\in R;x\ge-\frac{5}{4}\right\}\)

B/ theo đề ta có  \(\frac{2x-3}{8}-\frac{x-5}{12}\) không dương

\(\Rightarrow\frac{2x-3}{8}-\frac{x-5}{12}\le0\)

\(\Rightarrow\frac{3\left(2x-3\right)}{24}-\frac{2\left(x-5\right)}{24}\le0\)

\(\Rightarrow\frac{6x-9}{24}-\frac{2x-10}{24}\le0\)
\(\Rightarrow\frac{6x-9-2x+10}{24}\le0\)

\(\Rightarrow\frac{4x-1}{24}\le0\)

\(\Rightarrow4x-1\le0\)

\(\Rightarrow4x\le1\)

\(\Rightarrow x\le\frac{1}{4}\)

\(\Rightarrow S=\left\{x\in R;x\le\frac{1}{4}\right\}\)

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

27 tháng 3 2018

a, \(\frac{2x-1}{3}+1=\frac{2x-1}{3}-11\)

<=> \(\frac{2x-1}{3}+1-\frac{2x-1}{3}+11=0\)

<=> \(\frac{2x-1-2x-1}{3}+12=0\)

<=> \(\frac{0x-2+36}{3}=0\)

<=> \(0x-2=0\) (Vô lý) => pt vô nghiệm

b, \(\frac{3-2x}{5}\ge0\) <=> \(3-2x\ge0\)

<=> \(x\le\frac{3}{2}\)

22 tháng 4 2017

Giải bài 43 trang 53 SGK Toán 8 Tập 2 | Giải toán lớp 8

9 tháng 5 2017

a/ A =  \(2x-5\ge0\)

\(\Leftrightarrow\)\(2x\ge5\)

\(\Leftrightarrow\)\(x\ge\frac{5}{2}\)

b/ \(\frac{4x-1}{3}\)-  \(\frac{2-x}{15}\)\(\le\)\(\frac{10x-3}{5}\)

\(\Leftrightarrow\)5(4x + 1) - 2 - x \(\le\)3(10x - 3)

\(\Leftrightarrow\)20x + 5 - 2 -x \(\le\)30x - 9

\(\Leftrightarrow\)9x - 30x \(\le\)-9 + 2

\(\Leftrightarrow\)-21x \(\le\)-7

\(\Leftrightarrow\)\(\ge\)\(\frac{1}{3}\)

Kết luận và biểu diễn tập nghiệm nha

23 tháng 4 2016

Bài 1:

a) Vì giá trị của biểu thức \(\frac{3x-2}{4}\) không nhỏ hơn giá trị của biểu thức \(\frac{3x+3}{6}\) nên \(\frac{3x-2}{4}\) \(\ge\) \(\frac{3x+3}{6}\)  

TH1: \(\frac{3x-2}{4}\)  = \(\frac{3x+3}{6}\) 

=> (3x-2)6 = (3x+3)4

     18x -12= 12x+12

=> x = 4

TH2: \(\frac{3x-2}{4}\) > \(\frac{3x+3}{6}\) 

=> (3x-2)6 > (3x+3)4

     18x-12> 12x+12

=> x \(\ge\) 5

b) Vì ( x+1)2 \(\ge\) 0; (x-1)2 \(\ge\) 0 mà (x+1) luôn lớn hơn (x-1) với mọi x nên không có giá trị của x thỏa mãn (x+1)2 nhỏ hơn (x-1)2

c) Phần c bạn cũng xét tương tự như phần a 

TH1: \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}=\frac{x^2}{7}-\frac{2x-3}{5}\)

TH2: \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}<\frac{x^2}{7}-\frac{2x-3}{5}\)

23 tháng 4 2016

Đã xem -_-
 

18 tháng 12 2017

\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\)

\(=\frac{x\left(x^2+2x\right)+2\left(x+5\right)\left(x-5\right)+50-5x}{2x\left(x+5\right)}=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\)

\(=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2-1+4\left(x-1\right)\right)}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}\)

a/ Để biểu thức xác đinh => 2x(x+5) khác 0 => x khác 0 và x khác -5

b/ Gọi biểu thức là A. Rút gọn A ta được: 

\(A=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\left(x\ne0;x\ne-5\right)\)

A=1 => x-1=2 => x=3

c/ A=-1/2 <=> x-1=-1 => x=0

d/ A=-3 <=> x-1=-6  => x=-5

7 tháng 5 2019

a, Vì \(2+\frac{3-2x}{5}\)không nhỏ hơn \(\frac{x+3}{4}-x\)

\(\Rightarrow2+\frac{3-2x}{5}\ge\frac{x+3}{4}-x\)

Giải phương trình : 

\(2+\frac{3-2x}{5}\ge\frac{x+3}{4}-x\)

\(\Rightarrow\frac{40}{20}+\frac{4\left(3-2x\right)}{20}\ge\frac{5\left(x-3\right)}{20}-\frac{20x}{20}\)

\(\Rightarrow40+12-8x\ge5x-15-20x\)

\(\Rightarrow7x=67\)

\(\Rightarrow x\ge\frac{67}{7}\)

7 tháng 5 2019

b, \(\frac{2x+1}{6}-\frac{x-2}{9}>-3\)

\(\Rightarrow\frac{3\left(2x+1\right)}{18}-\frac{2\left(x-2\right)}{18}>\frac{-54}{18}\)

\(\Rightarrow6x+3-2x+4>-54\)

\(\Rightarrow4x>-61\)

\(\Rightarrow x>\frac{-61}{4}\)\(\left(1\right)\)

Và : \(x-\frac{x-3}{4}\ge3-\frac{x-3}{12}\)

\(\frac{12x}{12}-\frac{3\left(x-3\right)}{12}\ge\frac{36}{12}-\frac{x-3}{12}\)

\(\Rightarrow12x-3x+9\ge36-x+3\)

\(\Rightarrow10x\ge30\)

\(\Rightarrow x\ge3\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}x>\frac{-61}{4}\\x\ge3\end{cases}\Rightarrow x>3}\)

Vậy với giá trị x > 3 thì x là nghiệm chung của cả 2 bất phương trình