
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a/ \(x^3=5x-12\Leftrightarrow x^3-5x+12=0\Leftrightarrow\left(x^3+3x^2\right)-\left(3x^2+9x\right)+\left(4x+12\right)=0\)
\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+4\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x+4\right)=0\)
*) x + 3 = 0 <=> x = -3
S = {-3}
b/ có ng giải
c/ \(\left(2x^2-5x+3\right)^2=\left(x^2+x-2\right)^2\Leftrightarrow\left(2x^2-5x+3\right)^2-\left(x^2+x-2\right)^2=0\)
\(\Leftrightarrow\left(2x^2-5x+3-x^2-x+2\right)\left(2x^2-5x+3+x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x^2-6x+5\right)\left(3x^2-4x-1\right)=0\)
\(\Leftrightarrow\left[\left(x^2-x\right)-\left(5x+5\right)\right]\left(3x^2-4x+1\right)=0\)
\(\Leftrightarrow\left[x\left(x-1\right)-5\left(x-1\right)\right]\left(3x^2-4x+1\right)=0\Leftrightarrow\left(x-5\right)\left(x-1\right)\left(3x^2-4x+1\right)=0\)
*) x- 5 = 0 <=> x = 5
*) x- 1 = 0 <=> x = 1
S={1;5}
d/ \(x^3-x^2=4\left(x-1\right)^2\Leftrightarrow x^3-x^2-4\left(x-1\right)^2=x^3-x^2-4x^2+8x-4=0\)
\(\Leftrightarrow x^3-5x^2+8x-4=\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2=0\)
*) x - 1 = 0 <=> x = -1
*) (x - 2)^2 = 0 <=> x = 2
S = {-1;2}

a, ĐKXĐ:
9x^2 - 16 ≠ 0
=> (3x - 4)(3x + 4) ≠ 0
=> 3x - 4 ≠ 0 và 3x + 4 ≠ 0
=> 3x ≠ 4 và 3x ≠ -4
=> x ≠ 4/3 hoặc x ≠ -4/3
b, ĐKXĐ:
x^2 - 5x + 6 ≠ 0
=> x^2 - 2x - 3x + 6 ≠ 0
=> x(x - 2) - 3(x - 2) ≠ 0
=> (x - 3)(x - 2) ≠ 0
=> x - 3 ≠ 0 và x - 2 ≠ 0
=> x ≠ 3 và x ≠ 2
c, ĐKXĐ :
x^2 - 4x + 4 ≠ 0
=> (x - 2)^2 ≠ 0
=> x - 2 ≠ 0
=> x ≠ 2

a) Để \(\frac{2x+3}{4x-5}=0\)
=> 2x + 3 = 0
x = -3/2
b) Để \(\frac{\left(x-1\right)\left(x+2\right)}{x^2-4x+3}=\frac{\left(x-1\right).\left(x+2\right)}{\left(x-3\right).\left(x-1\right)}=\frac{x+2}{x-3}=0\)
=> x + 2 = 0=> x = -2
c) để \(\frac{x^2-1}{x^2-2x+1}=\frac{\left(x-1\right).\left(x+2\right)}{\left(x-1\right)^2}=\frac{x+2}{x-1}=0\)
=> x + 2 = 0 => x = -2
d) để \(\frac{x^2-4}{x^2+3x-10}=\frac{\left(x+2\right).\left(x-2\right)}{\left(x-2\right).\left(x+5\right)}=\frac{x+2}{x+5}=0\)
=> ...
e) để \(\frac{x^3-16x}{x^3-3x^2-4x}=\frac{x.\left(x-4\right).\left(x+4\right)}{x.\left(x-4\right).\left(x+1\right)}=\frac{x+4}{x+1}=0\)
=> ....

A(x) chia hết cho B(x) khi m + 6 = 0 ⇒ m= -6
b) (x – 4)(x2 + 4x + 16) – x( x2 – 6) = x3 – 64 – x3 + 6x = 6x – 64
Vậy 6x – 64 = 2
6x = 66
x = 11

a) Để \(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=0\) \(\Leftrightarrow x^4+x^3+x+1=0\)
\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^3+1=0\\x+1=0\end{cases}\Rightarrow x=-1}\)
b) ĐKXĐ : \(x^4-10x^2+9\ne0\Leftrightarrow\left(x-9\right)\left(x-1\right)\left(x+1\right)\left(x+9\right)\ne0\)
\(\Rightarrow x\ne\left\{-9;-1;1;9\right\}\)
Để \(\frac{x^4-5x^2+4}{x^4-10x^2+9}=0\) \(\Leftrightarrow x^4-5x^2+4\ne0\)
\(\Leftrightarrow x^4-4x^2-x^2+4\ne0\)
\(\Leftrightarrow x^2\left(x^2-4\right)-\left(x^2-4\right)\ne0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow x=\left\{-2;2\right\}\)(TMĐKXĐ )
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.