K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

\(\sqrt{25x-25}-\dfrac{15}{2}\cdot\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\) (1)

\(\Leftrightarrow\sqrt{25\left(x-1\right)}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}=6+\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{25}\sqrt{x-1}-\dfrac{5}{2}\cdot\sqrt{x-1}=6+\sqrt{x-1}\)

\(\Leftrightarrow5\sqrt{x-1}-\dfrac{5}{2}\cdot\sqrt{x-1}=6+\sqrt{x-1}\)

\(\Leftrightarrow\dfrac{5}{2}\cdot\sqrt{x-1}=6+\sqrt{x-1}\)

\(\Leftrightarrow5\sqrt{x-1}=12+2\sqrt{x-1}\)

\(\Leftrightarrow5\sqrt{x-1}-2\sqrt{x-1}=12\)

\(\Leftrightarrow3\sqrt{x-1}=12\)

\(\Leftrightarrow\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=16\)

\(\Leftrightarrow x=16+1\)

\(\Leftrightarrow x=17\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{17\right\}\)

30 tháng 7 2015

a. \(\Rightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\Rightarrow\sqrt{x+5}\left(2-3+4\right)=6\Rightarrow\sqrt{x+5}=2\Rightarrow x+5=4\Rightarrow x=-1\)

b.\(\Rightarrow5\sqrt{x-1}-\frac{5}{2}\sqrt{x-1}-\sqrt{x-1}=6\Rightarrow\sqrt{x-1}\left(5-\frac{5}{2}-1\right)=6\Rightarrow\sqrt{x-1}=4\Rightarrow x-1=16\Rightarrow x=17\)

30 tháng 7 2015

Mình làm ý a thôi nha còn ý b tương tự 

a: \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

=>x+5=4

hay x=-1

b: \(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)

\(\Leftrightarrow\sqrt{x-1}\cdot\dfrac{3}{2}=6\)

\(\Leftrightarrow\sqrt{x-1}=4\)

=>x-1=16

hay x=17

24 tháng 6 2015

Một cách đánh giá khác:

ĐK \(x\ge1\)

+Với \(1\le x\le5\) thì \(x^2\le25;\)\(x\le5\Leftrightarrow4x-4\le2x+6\Leftrightarrow2\sqrt{x-1}\le\sqrt{2x+6}\)

Suy ra \(VT\le VP\), bpt vô nghiệm

+Với \(x>5\), đánh giá tương tự như trên, VT > VP.

Vậy ta suy ra bpt đúng khi x > 5.

31 tháng 7 2017

\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

<=> x + 1 = 16

<=> x = 15 (nhận)

~ ~ ~

\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

<=> x + 5 = 4

<=> x = - 1 (nhận)

31 tháng 7 2017

tính tan40°×tan45°×tan50°
#Help me -.-

11 tháng 6 2019

\(f,\sqrt{x^2-25}-\sqrt{x-5}=0\)

=> \(\sqrt{x^2-25}=\sqrt{x-5}\)

=>\(x^2-25=x-5\)

=>\(x^2-x=25-5=20\)

=>( đến đoạn này mình xin chịu )

11 tháng 6 2019

\(a,\sqrt{16x}=8\)

=>\(16x=8^2\)

=>\(16x=64\)

=>\(x=64:16=4\)

Vậy \(x\in\left\{4\right\}\)

\(b,\sqrt{x^2}=2x-1\)

=>\(x=2x-1\)

=>\(2x-x=1\)

=>\(x=1\)

Vậy \(x\in\left\{1\right\}\)

\(c,\sqrt{9.\left(x-1\right)}=21\)

=>\(9.\left(x-1\right)=21^2=441\)

=> \(x-1=441:9=49\)

=>\(x=49+1=50\)

Vậy \(x\in\left\{50\right\}\)

\(d,\sqrt{4\left(1-x\right)^2}-6=0\)

=>\(\sqrt{4\left(1-x\right)^2}=0+6=6\)

=> \(4\left(1-x\right)^2=6^2=36\)

=>\(\left(1-x\right)^2=36:4=9\)

=>\(1-x=\sqrt{9}=3\)

=>\(x=1-3=-2\)

Vậy \(x\in\left\{-2\right\}\)

\(g,\sqrt{9\left(2-3x\right)^2}=6\)

=> \(9.\left(2-3x\right)^2=6^2=36\)

=> \(\left(2-3x\right)^2=36:9=4\)

=> \(2-3x=\sqrt{4}=2\)

=>\(3x=2-2=0\)

=>\(x=0:3=0\)

Vậy \(x\in\left\{0\right\}\)

( còn các bài còn lại mình sẽ nghĩ tiếp , HS6-7 làm bài )

24 tháng 11 2019

b)\(\frac{2}{3}.\sqrt{4x^2-20}+2\sqrt{\frac{x^2-5}{9}}-3\sqrt{x^2-5}=2\)

\(< =>\frac{2}{3}.\sqrt{4\left(x^2-5\right)}+2\cdot\frac{\sqrt{x^2-5}}{3}-3\sqrt{x^2-5}=2\)

\(< =>\frac{2}{3}.2\sqrt{\left(x^2-5\right)}+2\cdot\frac{\sqrt{x^2-5}}{3}-3\sqrt{x^2-5}=2\)

\(< =>\frac{4}{3}\sqrt{\left(x^2-5\right)}+\frac{2}{3}.\sqrt{x^2-5}-3\sqrt{x^2-5}=2\)

\(< =>-\sqrt{\left(x^2-5\right)}=2\)

\(< =>\sqrt{\left(x^2-5\right)}=-2\)(vô nghiệm)

24 tháng 11 2019

a)\(\sqrt{25x-25}-\frac{15}{2}\sqrt{\frac{x-1}{9}}=6+\frac{3}{2}\sqrt{x-1}\)

\(< =>\sqrt{25\left(x-1\right)}-\frac{15}{2}.\frac{\sqrt{x-1}}{3}-\frac{3}{2}\sqrt{x-1}=6\)

\(< =>5\sqrt{x-1}-\frac{5}{2}.\sqrt{x-1}-\frac{3}{2}\sqrt{x-1}=6\)

\(< =>\sqrt{x-1}=6\)

\(< =>x-1=36\)

\(< =>x=37\)

vậy ...