K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

Đáp án A

Phương pháp: Chia cả 2 vế cho 3x, đặt tìm điều kiện của t.

Đưa về bất phương trình dạng 

Cách giải :

Ta có 

Đặt khi đó phương trình trở thành

Ta có: 

Vậy 

17 tháng 3 2018

Đáp án B

14 tháng 6 2018

Đáp án B

Đặt  t = 2 x > 1

PT ⇔ 3 m + 1 . 4 x + 2 - m 2 x + 1 < 0 ⇔ m 3 t 2 - t + t + 1 2 < 0 ⇔ m < - t 2 + 2 t + 1 3 t 2 - t = f ( t )

Xét hàm f ( x ) = - t 2 + 2 t + 1 3 t 2 - t  trên khoảng 1 ; + ∞ ⇒ f ' t = t + 1 1 - 7 t 3 t 2 - t 2 > 0  với  t ∈ 1 ; + ∞

Dựa vào bảng biến thiên, suy ra m < -2.

12 tháng 11 2017

5 tháng 6 2019

20 tháng 11 2018

Đáp án D

Ta có  log 0 , 02 log 2 3 x + 1 > log 0 , 02 m ⇔ m > log 2 3 x + 1  (vì cơ số = 0,02 < 1)

Xét hàm số f x = log 2 3 x + 1  trên  - ∞ ; 0   có   f ' x = 3 x . ln 3 3 x + 1 ln 2 > 0 ; ∀ x ∈ - ∞ ; 0

Suy ra f(x) là hàm số đồng biến trên  - ∞ ; 0 ⇒ m a x - ∞ ; 0 f x = f 0 = 1

Vậy để bất phương trình có nghiệm  ∀ x ∈ - ∞ ; 0 ⇒ m ≥ 1 .

27 tháng 2 2016

giả sử :  \(\frac{mx+m}{\left(m+1\right)x-m+2}>0\)\(,\text{∀}x\in\left[0;2\right]\)

\(\Rightarrow\frac{m.0+m}{\left(m+1\right).0-m+2}>0\)    \(\Rightarrow\frac{m}{2-m}>0\)

                               \(\Rightarrow0\)\(<\)\(m<\)\(2\)

ngược lại \(0<\)\(m<2\) thì:

\(mx+m>0,\text{∀}x\in\left[0;2\right]\)

\(\left(m+1\right)x\ge0>m-2,\)\(\text{∀}x\in\left[0;2\right]\)

\(\Rightarrow\left(m+1\right)x-m+2>0,\text{∀}x\in\left[0;2\right]\)

\(\Rightarrow\frac{mx+m}{\left(m+1\right)x-m+2}>0,\text{∀}x\in\left[0;2\right]\)

vậy:  \(0\)\(<\)\(m<\)\(2\) là kết quả cần tìm

25 tháng 4 2019

Bất phương trình đã cho 

Đặt  Bất phương trình trở thành 

Chọn D.

18 tháng 11 2017