Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án D
nên là hàm đồng biến trên từng khoảng xác định.
Đáp án C
Phương pháp:
Đặt 2 x = t t > 0 , đưa về phương trình bậc 2 ẩn t, tìm điều kiện của phương trình bậc 2 ẩn t để phương trình ban đầu có 2 nghiệm phân biệt.
Cách giải: Đặt 2 x = t t > 0 khi đó phương trình trở thành t 2 − 2 m t + m + 2 = 0 *
Để phương trình ban đầu có 2 nghiệm phân biệt thì phương trình (*) có 2 nghiệm dương phân biệt.
Khi đó: Δ ' > 0 S > 0 P > 0 ⇔ m 2 − m − 2 > 0 2 m > 0 m + 2 > 0 ⇔ m > 2 m < − 1 m > 0 m > − 2 ⇒ m > 2
Chú ý và sai lầm: Rất nhiều học sinh sau khi đặt ẩn phụ thì quên mất điều kiện t > 0, dẫn đến việc chỉ đi tìm điều kiện đề phương trình (*) có 2 nghiệm phân biệt.
Chọn D.
Để phương trình f(x)=m+2 có 4 nghiệm phân biệt thì đường thẳng y=m+2 phải cắt đồ thị hàm số y=f(x) tại 4 điểm phân biệt.
Dựa vào đồ thị ta được -4<m+2<-3 => -6<m<-5
Đáp án C
Phương trình ⇔ − m = x 3 − 12 x − 2 . Điều kiện trở thành đường y= m cắt đồ thị hàm số y = x 3 − 12 x − 2 tại 3 điểm phân biệt.
Lập bảng biến thiên của y = x 3 − 12 x − 2 .
Nhìn vào bảng biến thiên, điều kiện của m là − m ∈ 14 ; − 18 ⇔ m ∈ − 14 ; 18 .
ĐKXĐ:
ta có
Ta có:
BBT:
Từ BBT ta có:
t ∈ - 1 ; 2
Khi đó phương trình trở thành:
ta có
Hàm số đồng biến trên R Hàm số đồng biến trên t ∈ - 1 ; 2 .
Từ
Chọn B.
Đáp án C.