Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{n+4}{n-1}=\frac{\left(n-1\right)+5}{n-1}=\frac{n-1}{n-1}+\frac{5}{n-1}=1+\frac{5}{n-1}\)
Để \(n+4⋮n-1\Leftrightarrow\frac{5}{n-1}\in N\Leftrightarrow5⋮n-1\Leftrightarrow n-1\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)
* Với n - 1 = -1 => n = -1 + 1 = 0 ( thỏa mãn )
* Với n - 1 = 1 => n = 1+ 1 = 2 ( thỏa mãn )
* Với n - 1 = -5 => n = -5 + 1 = -4 ( ko thỏa mãn )
* Với n - 1 = 5 => n = 5 + 1 = 6 ( thỏa mãn )
Vậy với n \(\in\) { 0; 2; 6 } thì n + 4 \(⋮\)n - 1
Các bài còn lại bn làm tương tự như vậy
a) ta có: 1 -3n chia hết cho 2n +1
=> 2 - 6n chia hết cho 2n +1
=> 5 - 3 - 6n chia hết cho 2n +1
5 - 3.(1+2n) chia hết cho 2n + 1
...
bn tự làm tiếp đk r
b) ta có: 2-7n chia hết cho 2n + 5
=> 4 - 14n chia hết cho 2n + 5
=> 39 - 35 - 14n chia hết cho 2n + 5
39 - 7.(5+2n) chia hết cho 2n +5
...
c) ta có: 4n + 9 chia hết cho 3n + 1
=> 12n + 27 chia hết cho 3n + 1
12n + 4+23 chia hét cho 3n + 1
4.(3n+1) + 23 chia hết cho 3n + 1
...
d) ta có: n^2 + 2n + 7 chia hết cho n+2
=> n.(n+2) + 7 chia hết cho n + 2
....
e) ta có: n^2 + n + 1 chia hết cho n + 1
=> n.(n+1) + 1 chia hết cho n + 1
...
a,
Theo bài ra ta có: 2n +5 chia hết cho n+2
Mà 2n chia hết cho n
Suy ra: ( 2n +5)- 2(n+2) chia hết cho n+2
2n +5 - 2n-2 chia hết cho n+2
3 chia hết cho n+2
Suy ra: n+2 thuộc Ư(3) = { 1,3}
Ta có :
n+2=1 ( phép tính ko thực hiện được)
n+2=3 vậy n=1
Vậy ta có số tự nhiên n là 1
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
4n+3=4n-1+4
vì 4n+3 chia het cho n-1
mà n-1 chia hết cho n -1
=>4 chia het cho n- 1
=>4 thuộc U[4]={1 ,2 ,4}
=>n=2,n=3,n=5